Dichten, Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Der Zufallsvektor (X, Y) sei absolutstetig verteilt mit der Dichte
f(x, [mm] y)=\begin{cases} \bruch{2}{3}x+\bruch{4}{3}y, & \mbox{für } x \in [0, 1], y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}
[/mm]
a) Bestimmen Sie die Dichten [mm] f_{X} [/mm] und [mm] f_{Y}.
[/mm]
b) Bestimmen Sie die Verteilungsfunktionen [mm] F_{X} [/mm] und [mm] F_{Y}.
[/mm]
c) Berechnen Sie [mm] P_{X}([0, \bruch{1}{2}]), P_{Y}([0, \bruch{1}{2}]), P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}).
[/mm]
d) Sind X und Y unabhängig? |
Hallo,
ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann mich wer korrigieren falls meine Ansätze falsch sind?
zu a)
In der Vorlesung haben wir gelernt, dass wir die "Randdichte" [mm] f_{X} [/mm] bestimmen indem wir f nach y integrieren (analog für [mm] f_{Y}).
[/mm]
Also erhalte ich
[mm] f_{X}(x) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dy} [/mm] = [mm] \begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}
[/mm]
[mm] f_{Y}(y) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dx} [/mm] = [mm] \begin{cases} \bruch{1}{3}, & \mbox{für } y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}
[/mm]
Was mich etwas verunsichert ist, dass wenn ich [mm] f_{X} [/mm] oder [mm] f_{Y} [/mm] (Lebesgue-)integriere, nicht 1 rauskommt. Das müsste doch für eine Dichte der Fall sein oder?
zu b)
Hier integriere ich einfach die entsprechenden Dichten:
[mm] F_{X}(x) [/mm] = [mm] \integral_{-\infty}^{x}{f_{X}(y) dy} [/mm] = [mm] \begin{cases} 0, & \mbox{für } x < 0 \\ \bruch{2}{3}x, & \mbox{für} x \in [0, 1] \\ 1, & \mbox{sonst} \end{cases}
[/mm]
[mm] F_{Y}(y) [/mm] = [mm] \integral_{-\infty}^{y}{f_{Y}(x) dx} [/mm] = [mm] \begin{cases} 0, & \mbox{für } y < 0 \\ \bruch{1}{3}y, & \mbox{für} y \in [0, 1] \\ 1, & \mbox{sonst} \end{cases}
[/mm]
zu c)
[mm] P_{X}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{X}(x) dx} [/mm] = [mm] [\bruch{2}{3}x]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{3}
[/mm]
[mm] P_{Y}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{Y}(y) dy} [/mm] = [mm] [\bruch{1}{3}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{6}
[/mm]
[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] habe ich iteriert (Satz von Fubini) berechnet:
[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\integral_{0}^{\bruch{1}{2}}{\bruch{2}{3}x+\bruch{4}{3}y dx dy}} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{[\bruch{1}{3}x² + \bruch{4}{3}y]_{0}^{\bruch{1}{2}} dy} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\bruch{1}{12} dy} [/mm] = [mm] [\bruch{1}{12}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{24}
[/mm]
Stimmt das?
zu d)
Hier bin ich mir bei der Begründung nicht sicher.
Sind X, Y abhängig, da das Produkt der Randverteilungen ungleich dem Produkt der gemeinsamen Verteilung ist?
[mm] (\bruch{1}{3} [/mm] * [mm] \bruch{1}{6} [/mm] = [mm] \bruch{1}{18} \not= \bruch{1}{24}
[/mm]
Man kann das auch irgendwie über die Dichten begründen.
Danke für Hilfe/Vorschläge.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:46 Di 18.01.2011 | Autor: | luis52 |
>
> ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann
> mich wer korrigieren falls meine Ansätze falsch sind?
>
> zu a)
> In der Vorlesung haben wir gelernt, dass wir die
> "Randdichte" [mm]f_{X}[/mm] bestimmen indem wir f nach y integrieren
> (analog für [mm]f_{Y}).[/mm]
> Also erhalte ich
> [mm]f_{X}(x)[/mm] = [mm]\integral_{0}^{1}{f(x, y) dy}[/mm] = [mm]\begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}[/mm]
[mm] $\frac{2 x}{3}+\frac{2}{3}$
[/mm]
> Was mich etwas verunsichert ist, dass wenn ich $ [mm] f_{X} [/mm] $ oder $ [mm] f_{Y} [/mm] $
> (Lebesgue-)integriere, nicht 1 rauskommt.
Zurecht.
> Das müsste doch für eine Dichte der Fall sein oder?
Ja.
vg Luis
|
|
|
|
|
> [mm]\frac{2 x}{3}+\frac{2}{3}[/mm]
Wie kommt man darauf? Ist nicht [mm] \integral_{0}^{1}{\bruch{2}{3}x + \bruch{4}{3}y dy} [/mm] = [mm] [\bruch{2}{3}x [/mm] + [mm] \bruch{2}{3}y²]_{0}^{1} [/mm] = [mm] \bruch{2}{3}x [/mm] + [mm] \bruch{2}{3} [/mm] - [mm] (\bruch{2}{3}x [/mm] + 0) = [mm] \bruch{2}{3} [/mm] ?
|
|
|
|