matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieDichtefunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Dichtefunktion
Dichtefunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtefunktion: Dichtefunktion herausfinden
Status: (Frage) beantwortet Status 
Datum: 18:25 So 19.09.2010
Autor: Delta458

Aufgabe 1
[Dateianhang nicht öffentlich] Gesucht ist h (höhe)

Aufgabe 2
[Dateianhang nicht öffentlich] Gesucht ist h (höhe)

So nun könnte man h vielleicht leicht ausrechnen durch schätzen oder rechtecksformel a*b.

Aber ich will das ganze durch Integral lösen. Da man das Integral immer anwenden kann ohne viel nachzudenken.

Die Frage ist nur wie soll ich die Funkion bei Aufgabe 1 und 2 aufbauen.

Meine idee:
@Aufgabe 1:
[mm] \integral_{-2}^{0}{(kx + d) dx} [/mm] + [mm] \integral_{0}^{6}{ (a*b) dx} [/mm] = 1

Aber ich weiss nicht ob das stimmt. Ich komme auf keine richtige Lösung.

Wie soll ich das Integral aufbauen?



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 So 19.09.2010
Autor: XPatrickX

Hallo,


nun für die erste Funktion gilt doch:

[mm] $$f(x)=\begin{cases} \frac{h}{2}x+h, & \mbox{für } -2\le x\le 0 \\ h, & \mbox{für } 0

Kannst du damit stückweise das Integral aufstellen?


Gruß Patrick

Bezug
                
Bezug
Dichtefunktion: Integralrechnung
Status: (Frage) beantwortet Status 
Datum: 19:11 So 19.09.2010
Autor: Delta458

Aufgabe
[mm] \integral_{-2}^{0}{ (\bruch{h}{2} + h ) dx}+\integral_{0}^{6}{ (h) dx} [/mm] = 1

Ah gut.

Dann hätte ich:
@Aufgabe 1:

[mm] \integral_{-2}^{0}{ (\bruch{h}{2} + h ) dx}+\integral_{0}^{6}{ (h) dx} [/mm] = 1

[mm] \bruch{h}{2}\bruch{x^{2}}{2} [/mm] + h*x  [mm] \biggr|_{-2}^{0} [/mm] + h*x  [mm] \biggr|_{0}^{6} [/mm] = 1

0 - 1 + 2h + 6h = 1
h = [mm] \bruch{1}{4} [/mm]

Kann mir das jemand bestätigen, ob das richtig ist?

Bezug
                        
Bezug
Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 So 19.09.2010
Autor: schachuzipus

Hallo Delta458,




> [mm]\integral_{-2}^{0}{ (\bruch{h}{2} \red{x}+ h ) dx}+\integral_{0}^{6}{ (h) dx}[/mm]  = 1
>  Ah gut.
>  
> Dann hätte ich:
>  @Aufgabe 1:
>  
> [mm]\integral_{-2}^{0}{ (\bruch{h}{2}\red x + h ) dx}+\integral_{0}^{6}{ (h) dx}[/mm]  = 1
>  
> [mm]\bruch{h}{2}\bruch{x^{2}}{2}[/mm] + h*x  [mm]\biggr|_{-2}^{0}[/mm] + h*x   [mm]\biggr|_{0}^{6}[/mm] = 1
>  
> [mm]0 - \red{1} + 2h + 6h = 1[/mm]

Da muss doch [mm]\red{-h}[/mm] stehen: [mm]\frac{h}{2}\cdot{}\frac{(-2)^2}{2}=h[/mm]

>  h = [mm]\bruch{1}{4}[/mm]
>  
> Kann mir das jemand bestätigen, ob das richtig ist?

Das musst du am Ende nochmal nachrechnen, da ist beim Einsetzen der Grenzen was daneben gegangen ..

Gruß

schachuzipus


Bezug
                                
Bezug
Dichtefunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 So 19.09.2010
Autor: Delta458

yup. Somit gelöst.

h = [mm] \bruch{1}{7} [/mm]

Bezug
                                        
Bezug
Dichtefunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 So 19.09.2010
Autor: XPatrickX


> yup. Somit gelöst.
>  
> h = [mm]\bruch{1}{7}[/mm]  

[ok]

Lässt sich ja hier auch einfach elementar geometrisch überprüfen:
[mm] $$\frac{1}{2}*2*\frac{1}{7}+6*\frac{1}{7}=1$$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]