matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieDichte von Maßen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Dichte von Maßen
Dichte von Maßen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte von Maßen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 10.05.2011
Autor: aly19

Aufgabe
Es sien [mm] (\Omega, \mathcal{A}) [/mm] ein messbarer Raum und [mm] \mu, \nu [/mm] Maße auf diesem. Weisen sie jeweils [mm] \nu [/mm] << [mm] \mu [/mm] nach und geben sie eine Dichte f von [mm] \nu [/mm] bzgl [mm] \mu [/mm] an.
a) [mm] (\Omega, \mathcal{A})=(\IN, P(\IN)), [/mm] P und Q beliebige W-Maße und [mm] \mu=P+Q, \nu=P. [/mm]
b) [mm] (\Omega, \mathcal{A}) [/mm] beliebig, [mm] \lambda [/mm] ein [mm] \sigma-endliches [/mm] Maß auf [mm] \mathcal{A}, [/mm] P und Q W-Maße mit [mm] \lambda [/mm] Dichten g und h und [mm] \mu=P+Q, \nu [/mm] =P.

Hi, ich komm da nicht so wirklich voran.
Also erstmal zu a)
Das [mm] \nu <<\mu [/mm] gilt konnte ich zeigen. Jetzt suche ich aber ja eine Dichte. D.h. es muss ja gelten:
[mm] \nu(A)=P(A)=\int_A [/mm] f(x) [mm] d\mu=\int_A [/mm] f(x) d(P+Q).
Jezt komm ich da irgendwie nicht mit weiter. Kann ich die Maße hinten im Integral irgendwie auseinander ziehen? Oder macht man das gar nicht so? Vielleicht doch irgendiwe differenzieren?
Wäre super wenn mir jemand da nen Tipp geben kann, wie man vorgehen muss.
Viele Grüße :)

        
Bezug
Dichte von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Mi 11.05.2011
Autor: Fry

Hi!

zu a) Berechne die Dichte f, indem du für ein beliebiges [mm] \omega\in\IN [/mm]
[mm] P(\{\omega\}) [/mm] berechnest, also indem du in obiger Darstellung [mm] A=\{\omega\} [/mm] setzt.
Wenn du das Integral ausgerechnet hast, einfach nach [mm] f(\omega) [/mm] auflösen.

Danach dann zeigen, dass dies auch wirklich die Dichte ist, indem du für beliebige Mengen A es nachweist. Beachte dabei, dass, da [mm] \IN [/mm] abzählbar ist, sich jede Teilmenge A als disjunkte Vereinigung von Einpunktmengen [mm] \{\omega\} [/mm] schreiben lässt.

zu b) Wie lautet die [mm] $\lambda$-Dichte [/mm] von P+Q ?
Dann kannst du auf zwei verschiedene Arten P(A) (mittels [mm] $\lambda$-Dichten) [/mm] darstellen. Danach benutzten, dass generell Dichten fast sicher eindeutig bestimmt sind.

Gruß
Fry



Bezug
                
Bezug
Dichte von Maßen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:57 Mi 11.05.2011
Autor: aly19

hey, danke mal wieder für deine antwort :)

> zu a) Berechne die Dichte f, indem du für ein beliebiges
> [mm]\omega\in\IN[/mm]
> [mm]P(\{\omega\})[/mm] berechnest, also indem du in obiger
> Darstellung [mm]A=\{\omega\}[/mm] setzt.
>  Wenn du das Integral ausgerechnet hast, einfach nach
> [mm]f(\omega)[/mm] auflösen.

Also sei [mm] \omega \in \IN. [/mm]
Dann [mm] P(\{\omega\})=\int_{\{\omega\}} [/mm] f(x) [mm] d\mu=\int [/mm] f(x) [mm] 1_{\{\omega\}}d\mu =f(\omega)(P(\{\omega\})+Q(\{\omega\})) [/mm]
Hier bin ich mir nicht sicher ob der letzte Schritt beim Intergal ausführen so geht, aber man integriert ja eigentlich nur über einen Punkt also müsste das ja eigentlich Maß von dem Punkt mal Funktionswert sein oder?
Dann folgt:
[mm] f(\{\omega\})=\bruch{P(\{\omega\})}{P(\{\omega\})+Q(\{\omega\})} d\mu [/mm]

> Danach dann zeigen, dass dies auch wirklich die Dichte ist,
> indem du für beliebige Mengen A es nachweist. Beachte
> dabei, dass, da [mm]\IN[/mm] abzählbar ist, sich jede Teilmenge A
> als disjunkte Vereinigung von Einpunktmengen [mm]\{\omega\}[/mm]
> schreiben lässt.

Okay sei jetzt A [mm] \subset \IN [/mm] beliebig, dann [mm] A=\cup_{a \in A}\{a\}, [/mm] da A abzählbar.
[mm] \int_A \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})}=\int 1_A \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} d(P+Q)=\int \sum_{a \in A} 1_{\{ a\}} \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} [/mm] d(P+Q)= [mm] \sum_{a \in A} \int 1_{\{ a\}} \bruch{P(\{x\})}{P(\{x\})+Q(\{x\})} [/mm] d(P+Q) [mm] =\sum_{a \in A} P(\{a\})=P(\cup_{a \in A} \{a\})=P(A). [/mm]
Stimmt das so? ich war mir das nicht so sicher mit dem auseinander ziehen?

> zu b) Wie lautet die [mm]\lambda[/mm]-Dichte von P+Q ?
>  Dann kannst du auf zwei verschiedene Arten P(A) (mittels
> [mm]\lambda[/mm]-Dichten) darstellen. Danach benutzten, dass
> generell Dichten fast sicher eindeutig bestimmt sind.

Zu b)
Also [mm] P(A)=\int_A [/mm] g(x) [mm] d\lambda [/mm] gilt einerseits.
Andererseits: [mm] \mu(A)=(P+Q)(A)=\int_A [/mm] (g+h) [mm] d\lambda [/mm] und somit:
[mm] P(A)=\int_A [/mm] f(x) [mm] d\mu=\int_A f(x)d(P+Q)=\int_A [/mm] f(x)(g+h)(x) [mm] d\lambda [/mm]
Wegen der Eindeutigkeit:
f(x)(g(x)+h(x))=g(x) [mm] \mu-f.ü. [/mm]
Also: [mm] f(x)=\bruch{g(x)}{g(x)+h(x)} [/mm]
Stimmt das so?
Für die Eindeutigkeit ist doch ncoh Voraussetzung, dass f oder g [mm] \lambda-integrierbar [/mm] sind oder? Also jedenfalls steht der Satz so in unserem Skript. Kann man das ncoh irgendwie zeigen?
Vielen Dank für deine Hilfe und viele Grüße :)

Bezug
                        
Bezug
Dichte von Maßen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mi 11.05.2011
Autor: Fry

Hey,

also soweit ich das beurteilen kann, schauts sehr gut aus :)

Bei der Dichte müsstest du vielleicht noch Indikatoren hinzufügen,
da die Gleichungen ja nur Sinn machen, wenn P({w})>0 bzw g>0.

[mm] f(x)=\bruch{P(\{x\})}{P(\{x\})+Q(\{x\})}*1_{\{P(\{x\})>0\}} [/mm]

Zu deiner letzten Frage...bin da gerade überfragt. Vielleicht weiß jemand anders das..?

Viele Grüße!
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]