matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungDichte/Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Dichte/Erwartungswert
Dichte/Erwartungswert < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte/Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:08 So 24.06.2012
Autor: Cyantific

Aufgabe
Der Graf einer Funktion f(t) sei durch das folgende Schaubild gegeben, wobei der Parameter a>0 beliebig gewählt werden kann : [Dateianhang nicht öffentlich]

a) Wie ist der Parameter a zu wählen ,damit die Funktion f eine Dichte einer Zufallsvariablen X ist?

b) Bestimmen Sie den Erwartungswert und die Varianz von X

Hallo,

Zu a) Stimmet es, dass a den Wert 1 annimmt (Aufteilen des Intervalls + integrieren)?


Zu b) Mein Erwartungswert ist 0, was mich ein bisschen stutzig macht. Bin folgendermaßen vorgegangen:

E(X)= [mm] \integral_{-\infty}^{-1}{x*f(x) dx}+\integral_{-1}^{0}{x*f(x) dx}+\integral_{0}^{1}{x*f(x) dx}+\integral_{1}^{\infty}{x*f(x) dx} [/mm]

Erstes und letztes Integaral ist 0. E(X)= [mm] \integral_{-1}^{0}{x*(x+1) dx}+\integral_{0}^{1}{x*(-x+1) dx} [/mm]

Weiteres aufteilen und ausrechnen der Integrale ergibt 0, kann das sein?

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Dichte/Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 So 24.06.2012
Autor: tagg

Hallo,

zu a):
Welche wichtige Eigenschaft muss denn erfüllt sein, damit man von einer Wahrscheinlichkeitsdichte sprechen kann?

(Ich komme dabei auch auf $a=1$, da aber das ganze nach nem schönen stinknormalen Dreieck aussieht, brauchst du da eigentlich noch nicht mal großartig zu integrieren ;-))

zu b)
Warum wundert es dich denn, dass du den Erwartungswert null kriegst? Wenn f die Wahrscheinlichkeitsdichte einer Zufallsvariable beschreibt, so hast du doch bei $x=0$ ein Maximum, also ist dieser Wert doch am wahrscheinlichsten ;-) (soweit zum Intuitiven). Drumherum nimmt die Funktion außerdem gleichmäßig und symmetrisch ab.. Deshalb heben sich die Integrale einfach weg (mathematische Begründung). Null sollte also stimmen! ;-)

Gruß
tagg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]