matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalmatrix bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Diagonalmatrix bestimmen
Diagonalmatrix bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Di 02.07.2013
Autor: Dajohre

Aufgabe
Bestimmen Sie für die Matrix

A= [mm] \pmat{ 3 & 0 & -2 \\ -2 & 0 & 3 \\ 0 & -4 & 0 } [/mm]

eine Orthonormalbasis aus Eigenvektoren. Geben Sie außerdem Matrizen S; S^-1 sowie eine Diagonalmatrix
D an, so dass S^-1AS = D ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Habe als Eigenwerte { 2 , (-1/2)+ [mm] \wurzel{-39}/-2 [/mm] ,  (-1/2)- [mm] \wurzel{-39}/-2 [/mm] } heraus.

Der Eigenvektor von 2 ist  [mm] \vektor{4 \\ -1 \\ 2} [/mm]

Der Rest war ziemlich kompliziert zu Rechnen und ich bin auf keinen grünen Zweig gekommen.

Ein Onlinerechner liefert mir die Vektoren

[mm] \vektor{5-6,244i \\ -2+12,489 \\ 16} [/mm]

und


[mm] \vektor{5+6,244i \\ -2-12,489 \\ 16} [/mm]


Meine Fragen wären:

Wie bilde ich daraus eine Orthonormalbasis?
S und D sind warscheinlich nicht beliebig,
allerdings weiß ich nicht genau was die Werte sein müssen.

Meine Vermutung wäre:

D= [mm] \pmat{ 2 & 0 & 0 \\ 0 & (-1/2)+ \wurzel{-39}/-2 & 0 \\ 0 & 0 & (-1/2)- \wurzel{-39}/-2 } [/mm]

Falls das stimmt wie komme ich dann auf S?

        
Bezug
Diagonalmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Di 02.07.2013
Autor: steppenhahn

Hallo,

> Bestimmen Sie für die Matrix
>  
> A= [mm]\pmat{ 3 & 0 & -2 \\ -2 & 0 & 3 \\ 0 & -4 & 0 }[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> eine Orthonormalbasis aus Eigenvektoren. Geben Sie
> außerdem Matrizen S; S^-1 sowie eine Diagonalmatrix
>  D an, so dass S^-1AS = D ist.



> Habe als Eigenwerte { 2 , (-1/2)+ [mm]\wurzel{-39}/-2[/mm] ,  
> (-1/2)- [mm]\wurzel{-39}/-2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} heraus.

2 ist OK, aber laut []WolframAlpha sollten die Vorzeichen der anderen beiden Eigenwerte anders lauten (ohne "-").



> Der Eigenvektor von 2 ist  [mm]\vektor{4 \\ -1 \\ 2}[/mm]

Ja.

> Der Rest war ziemlich kompliziert zu Rechnen und ich bin
> auf keinen grünen Zweig gekommen.
>  
> Ein Onlinerechner liefert mir die Vektoren
>  
> [mm]\vektor{5-6,244i \\ -2+12,489 \\ 16}[/mm]
>  
> und
>  
>
> [mm]\vektor{5+6,244i \\ -2-12,489 \\ 16}[/mm]


Ja.


> Meine Fragen wären:
>  
> Wie bilde ich daraus eine Orthonormalbasis?


Damit so etwas überhaupt geht, müsste die Matrix normal sein... Ist sie aber nicht!
Also existiert so eine Basis nicht!

Angenommen es würde gehen, dann müssten die Eigenvektoren zu verschiedenen Eigenwerten bereits senkrecht aufeinanderstehen. Da du 3 verschiedene Eigenwerte hast, müsstest du diese nur noch normieren (Länge 1).


Dann ist S die Matrix, welche entsteht, wenn du die normierten Eigenvektoren in die Spalten schreibst (1. Spalte = 1. Eigenvektor, 2. Spalte = 2. Eigenvektor, ...)


Sollte es mehrere Eigenvektoren zu einem Eigenwert geben (hier nicht der Fall), kannst du das []Gram-Schmidtsche Orthogonalisierungsverfahren verwenden, um eine Orthonormalbasis zu erreichen.

-----


Du kannst bei deinem Beispiel zwar keine Orthonormalbasis finden, aber zumindest hast du eine Basis aus Eigenvektoren. Wenn du die in die Spalten der Matrix S schreibst, gilt trotzdem:

$D = [mm] S^{-1} [/mm] A S$.

Dann ist deine Vermutung

> Meine Vermutung wäre:
>  
> D= [mm]\pmat{ 2 & 0 & 0 \\ 0 & (-1/2)+ \wurzel{-39}/-2 & 0 \\ 0 & 0 & (-1/2)- \wurzel{-39}/-2 }[/mm]

richtig. (Sofern die Reihenfolge der Eigenvektoren in S mit der Reihenfolge der Eigenwerte in D übereinstimmt).



Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]