matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonalmatrix bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Diagonalmatrix bestimmen
Diagonalmatrix bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mo 27.04.2009
Autor: Igor1

Hallo,

gegeben sei die reelle 2x2Matrix [mm] A=\pmat{ 2 & 2 \\ 1 & 3 }. [/mm]
Finden Sie eine invertierbare Matrix C, so dass [mm] D=C^{-1}AC [/mm] eine Diagonalmatrix ist.

Ich habe dazu etwas im Internet gefunden und zwar, dass man die berechneten Eigenvektoren einfach in die Spalten von C setzt und damit soll das erledigt sein. Man hat C gefunden und [mm] C^{-1} [/mm] muss/wird auch existieren.

Meine Frage ist : warum kann man so vorgehen?
Ich muss eine Hausübung machen und einfach ein Argument zu übernehmen , ohne es zu verstehen, ist eigentlich nicht der Sinn der Sache.


        
Bezug
Diagonalmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 27.04.2009
Autor: angela.h.b.


> Hallo,
>  
> gegeben sei die reelle 2x2Matrix [mm]A=\pmat{ 2 & 2 \\ 1 & 3 }.[/mm]
>  
> Finden Sie eine invertierbare Matrix C, so dass [mm]D=C^{-1}AC[/mm]
> eine Diagonalmatrix ist.
>  
> Ich habe dazu etwas im Internet gefunden und zwar, dass man
> die berechneten Eigenvektoren einfach in die Spalten von C
> setzt und damit soll das erledigt sein. Man hat C gefunden
> und [mm]C^{-1}[/mm] muss/wird auch existieren.
>  
> Meine Frage ist : warum kann man so vorgehen?

Hallo,

man führt  eine Basistransformation durch:

man stellt nun die Darstellungsmatrix der durch A bzgl der Standardbasis repräsentierten linearen Abbildung  bzgl einer Basis aus Eigenvektoren auf.

In den Spalten der neuen Matrix stehen dann die Bilder der neuen Basisvektoren in Koordinaten bzgl. der neuen Basis.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]