matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalmatrix + charakt. Poly
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Diagonalmatrix + charakt. Poly
Diagonalmatrix + charakt. Poly < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix + charakt. Poly: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 20.04.2009
Autor: Mary1986

Aufgabe
Aufgabe 1. Sei K ein Körper und [mm] A \in\ Mat_2(K)[/mm]
Wann ist A ähnlich zu einer Diagonalmatrix [mm]diag(\lambda_1,\lambda_2) mit \lambda_i \in K[/mm] ? Bestimmen Sie in diesem Fall das charakteristische Polynom von A.  

Also ich weiß, dass folgendes zutrifft:
Sei A eine zur Diagonalmatrix D ähnliche Matrix, dann gilt:
1) det A = det D
2) tr(A)=tr(D)
und die charakt. Polynome sind gleich.
Außerdem gilt[mm] D = S^-1 A(S) [/mm]
Reicht das schon zum Beantworten der 1ten Teilfrage und bei der zweite ist doch das charkt.Polynom=[mm] a_11*a_22 -t*tr(A)+t^2 [/mm]oder?
Viele liebe Grüße
Mary

        
Bezug
Diagonalmatrix + charakt. Poly: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Di 21.04.2009
Autor: angela.h.b.


> Aufgabe 1. Sei K ein Körper und [mm]A \in\ Mat_2(K)[/mm]
> Wann ist A ähnlich zu einer Diagonalmatrix


Hallo,

"wann"? Irgendwie ist das komisch gefragt...

> [mm]diag(\lambda_1,\lambda_2) mit \lambda_i \in K[/mm] ? Bestimmen
> Sie in diesem Fall das charakteristische Polynom von A.  
> Also ich weiß, dass folgendes zutrifft:
>  Sei A eine zur Diagonalmatrix D ähnliche Matrix, dann
> gilt:
>  1) det A = det D
>  2) tr(A)=tr(D)
>  und die charakt. Polynome sind gleich.
>  Außerdem gilt[mm] D = S^-1 A(S)[/mm]

Ich würde hier antworten:

wenn es eine invertierbare 2x2-Matrix S gibt mit

>   D = S^-1 A(S)[/mm]

> Reicht das schon zum Beantworten der 1ten Teilfrage und bei
> der zweite ist doch das charkt.Polynom=[mm] a_1_1*a_2_2 -t*tr(A)+t^2 [/mm]oder?

Das charakteristische Polynom solltest Du nochmal nachrechnen.

Was ist denn [mm] det\pmat{ a_1_1-t & a_1_2 \\ a_2_1& a_2_2-t } [/mm] ?

Dann kannst Du ja, wenn Du weißt, daß die Matrix ähnlich zu einer Diagonalmatrix mit den Einträgen [mm] \lambda_i [/mm] ist, das charakteristische Polynom mithilfe der Lambdas ausdrücken. Ich denke, daß man das von Dir wissen wollte. (Schreib einfach alles hin.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]