matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDiagonalmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Diagonalmatrix
Diagonalmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix: Frage
Status: (Frage) beantwortet Status 
Datum: 15:26 Fr 23.09.2005
Autor: stevarino

Hallo

Meine Frage was sieht man aus D*A und A*D wobei A eine beliebige(n,n)-Matrix ist und D eine Diagonalmatrix

z.B.: [mm] A=\pmat{ a_{11} & a_{12} \\ b_{11} & b_{12} } D=\pmat{ 1 & 0 \\ 0 & 4 } [/mm]

dann ist [mm] A*D=\pmat{ a_{11} & 4* a_{12} \\ b_{11} & 4* b_{12} } [/mm]

und für [mm] D*A=\pmat{ a_{11} & a_{12} \\ 4* b_{11} & 4* b_{12} } [/mm]

was sieht man nun?????

wenn die Indizes nicht wären wäre das eine Transponierte der anderen Matrix

Bitte nicht allzukompliziert erklären hab gerade erst mit linerarer Algebra angefangen und ist alles noch ein bissl komlpliziert

Danke Stevo

        
Bezug
Diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Fr 23.09.2005
Autor: Galois

Hallo Stevo,

falls ich nicht irgendetwas Tiefsinniges übersehen habe, sollte die Antwort die Folgende sein:

Im ersten Fall ("Ranmultiplizieren" der Diagonalmatrix D von rechts) werden die Spalten von A mit dem entsprechenden Diagonalelement von D multipliziert (die erste mit dem ersten, die zweite mit dem zweiten).
Im zweiten Fall ("von links") geschieht dies mit den Zeilen von A.

Nebenbei zeigt $AD [mm] \neq [/mm] DA$ auch, daß Matrizen im allgemeinen nicht miteinander kommutieren. Aber das war hier vermutlich nicht gefragt.

Übrigens ist Deine Benennung für die Koeffizienten etwas ungewöhnlich. Üblicherweise würde man [mm] $a_{21}$ [/mm] bzw. [mm] $a_{22}$ [/mm] statt [mm] $b_{11}$ [/mm] und [mm] $b_{22}$ [/mm] schreiben. Aber das ist eine reine Formalie und hat natürlich keinerlei Einfluß auf den mathematischen Gehalt.

Grüße,
Galois

[]Bonner Mathe-Forum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]