matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDiagonalmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Diagonalmatrix
Diagonalmatrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix: diagonalisierbar
Status: (Frage) beantwortet Status 
Datum: 19:31 So 23.09.2007
Autor: fuchsone

Aufgabe
Bestimme die diagonalbasis

wenn A= [mm] \pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3} [/mm]

als eigenwerte erhalte ich

[mm] \lambda [/mm] 1 = 1 [mm] \lambda [/mm] 2 =2 [mm] \lambda [/mm] 3 = 3

und als eigenräume  [mm] \vektor{ 1 \\ 2 \\ 0 } \vektor{ 1 \\ 1 \\ 0 } \vektor{ 0 \\ 2 \\ 1 } [/mm]  

es gilt [mm] D=S\*A\*S^{-1} [/mm]

S ist bei mir [mm] \pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S^{-1} [/mm] = [mm] \pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1} [/mm]

nun bekomme aber keine diagonalmatrix raus
aber ich finde keinen fehler
kann mir jemand helfen


        
Bezug
Diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 23.09.2007
Autor: schachuzipus

Hallo fuchsone,



> Bestimme die diagonalbasis
>
> wenn A= [mm]\pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3}[/mm]
>  als
> eigenwerte erhalte ich
>  
> [mm]\lambda[/mm] 1 = 1 [mm]\lambda[/mm] 2 =2 [mm]\lambda[/mm] 3 = 3
>  
> und als eigenräume  [mm]\vektor{ 1 \\ 2 \\ 0 } \vektor{ 1 \\ 1 \\ 0 } \vektor{ 0 \\ 2 \\ 1 }[/mm]

Ui, das sind EigenVEKTOREN, Eigenräume sind der Spann derselben..


Du hast bei deiner Rechnung $S$ und [mm] $S^{-1}$ [/mm] vertauscht.

Da $A$ diagonalisierbar ist, gilt die Ähnlichkeitsbeziehung [mm] $A=S^{-1}DS$ [/mm]

Hier ist [mm] $S^{-1}$ [/mm] diejenige Matrix, deren Spalten die Eigenvektoren sind.

Also gilt [mm] $D=SAS^{-1}$ [/mm] , also alles mit vertauschten "Farben"

Rechne mal nach, es passt ;-)


LG

schachuzipus

  



Bezug
                
Bezug
Diagonalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 So 23.09.2007
Autor: fuchsone

sorry ich habs jetzt^^

hab mich verrechnet danke es haut hin

frage somit zurückgezogen!!

Bezug
        
Bezug
Diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 23.09.2007
Autor: fuchsone

sorry ich finde immernoch keine lösung

wenn jetzt mein [mm] S^{-1} [/mm] mein S ist dann
ist doch [mm] S^{-1}\ [/mm] * I =  S

wenn ich dann D = [mm] SAS^{-1} [/mm] rechen erhalt ich immernoch die falsche Matrix



Bezug
                
Bezug
Diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 23.09.2007
Autor: barsch

Hi,

du hast S und [mm] S^{-1} [/mm] richtig berechnet. Wie schachuzipus geschrieben hat, hast du lediglich S und [mm] S^{-1} [/mm] vertauscht.

Das heißt, du musst [mm] D=S^{-1}*A*S [/mm] berechnen:

[mm] S^{-1}=\pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S=\pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S^{-1}*A=\pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1}*\pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3}=\pmat{ -1 & 1 & -2 \\ 4 & -2 & 4 \\ 0 & 0 & 3} [/mm]

[mm] D=S^{-1}*A*S=\pmat{ -1 & 1 & -2 \\ 4 & -2 & 4 \\ 0 & 0 & 3}*\pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} =\pmat{ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3} [/mm]

MfG barsch

Bezug
        
Bezug
Diagonalmatrix: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Di 25.09.2007
Autor: MarthaLudwig

Hallo fuchsone!

Du mußt D=S^-1*A*S berechnen.

Es kommt dann eine Diagonalmatrix heraus.

Hoffe,daß ich helfen konnte.

Grüße Martha.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]