matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalisieren von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Diagonalisieren von Matrizen
Diagonalisieren von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisieren von Matrizen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:58 So 04.05.2008
Autor: pida_

Aufgabe
Sei V ein n-dimensionaler [mm] \IC-Vektorraum, [/mm] k [mm] \in \IN\setminus [/mm] 0 und f ein Endomorphismus mit [mm] f^k=id. [/mm]
Zeige, das f diagonalisierbar ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

also ich hab volgende Ansätze zu dieser Aufgabe. Einmal muss das Minimalpolynom von f nur einfache Nullstellen haben und wenn f diagonalisierbar ist dann mus es auch ne invertierbare Matrix S geben so dass S*f*(S^(-1))=id und da gilt [mm] f^k=id [/mm] folgt [mm] f^k=S*f*(S^{-1}) [/mm] ...
Aber weiter komme ich nicht weil bei mir kommt raus dass f=id sein muss und das kann ja nicht sein.
(Apropo ich versteh das hier auch nicht ganz: S*f*(S^(-1))=id =>f diagonalisierbar aber dann gilt doch auch das hier: S*f=id*S=> f=(S^(-1))*id*S=> f=id und das ist ja falsch das weiß ich aber was ist dann an der Rechnung falsch?)
Das wäre sehr nett wenn mir jemand bei der Aufgabe helfen kann.
lg, pida

        
Bezug
Diagonalisieren von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 So 04.05.2008
Autor: angela.h.b.

Hallo,

[willkommenmr].

Dies Aufgabe wird gerade auch dort bearbeitet.

Am besten klingst Du Dich bei weiteren Fragen auch im anderen Thread ein.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]