matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDiagonalisieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Diagonalisieren
Diagonalisieren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 04.05.2006
Autor: Franzie

Hallöchen!
Ich hab folgendes Problem:
Ich habe eine diagonalisierbare Matrix  A [mm] \in \IR^{n \times n} [/mm] mit nicht-negativen Eigenwerten gegeben und soll nun zeigen, dass es eine Matrix T gibt, sodass gilt [mm] T^{2}=A. [/mm]
Ich habe nun versucht, mir das erst einmal an einem Beispiel klar zu machen

[mm] A=\pmat{ 1 & 3 & 1 \\ 0 & 4 & 5 \\ 0 & 0 & 9 } [/mm]
Wie kann ich denn nun überhaupt so ein T berechnen?

liebe Grüße

        
Bezug
Diagonalisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Do 04.05.2006
Autor: choosy

Hallo erstmal,

wenn deine matrix diagonalisierbar ist, dann sei sie o.b.d.a. diagonal
(wir betrachten sie bzgl der entsprechenden basis)
hat $A$ auf der diagonalen die werte [mm] $\lambda_1...\lambda_n$, [/mm] so ist

[mm] $T=diag(\sqrt{\lambda_1}...\sqrt{\lambda_n})$ [/mm]  (also eine diagonal matrix mit wurzel... auf der diagonalen)
eine matrix mit
[mm] $T^2=A$ [/mm]

die wurzeln darf ich ziehen da die lambda-i die eigenwerte von $A$ sind, also positiv

Bezug
                
Bezug
Diagonalisieren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 04.05.2006
Autor: Franzie

Danke, jetzt ist mir klar, warum das so ist bei einer Diagonalmatrix. Aber was ist, wenn meine Matrix die Gestalt so nach Art meiner Matrix A hat, wo eben über den Eigenwerten in der Hauptdiagonale keine Nullen stehen. Wie kann ich denn dann das T berechnen?

liebe Grüße

Bezug
                        
Bezug
Diagonalisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 04.05.2006
Autor: choosy

so eine matrix wie deine ist irrelevant, da eine diagonalisierbare matrix
o.b.d.a. als diagonal angenommen werden kann. falls deine beispielmatrix diagonalisierbar ist, musst du eine basis $B$ bestimmen bezüglich derer deine matrix diagonalform hat. dann bekommst du einen basiswechsel
$F$ von deiner Basis nach B

nun kannst du wie gesagt ein T finden mit

[mm] $T^2 [/mm] = [mm] FAF^{-1}$, [/mm] da [mm] $FAF^{-1}$ [/mm] eine diagonalmatrix ist. nun kommst du wieder zu deiner ursprünglichen abbildung:

[mm] $A=F^{-1}T^2F=F^{-1}T (FF^{-1})TF [/mm] = [mm] (F^{-1}TF)^2$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]