matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDiagonalisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 02.02.2012
Autor: durden88

Aufgabe
Berechne Sie das charaktristische Polynom, die Eigenwerte und die Eigenvektoren von [mm] A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\2&-2&1 }. [/mm] Ist A Diagonalisierbar?

Hallo, also mir gehts auch um die Schreibweisen. Ich rechne mal vor:

[mm] det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8 [/mm]

Was ist eigendlich mein Charakteristisches Polynom?

So jetzt will ich die 0-Stellen herausbekommen, also das ganze=0 und Polynomdivision benutzen:

Durch ausprobieren [mm] \lambda_1=2 [/mm]

Dann bekomme ich durch die P-Q-Formel: [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

So das waren die Eigenwerte oder? Eigenvektoren berechne ich gleich noch. Jetzt hab ich noch eine Frage zur Diagonalisierbarkeit.

Ich habe gelernt, notwendige Bedingung: Die Funktion lässt sich vollständig in Linearfaktoren zerlegen. So und da hab ich mir einfach die Nullstellen genommen und multipliziert: [mm] (\lambda-2)(\lambda-4)(\lambda+1) [/mm] und ausmultipliziert, also klappt das, kann ich es so machen?

Hinreichende Bedingung: Die LF müssen paarweise verschieden sein. Jo und das klappt auch...

Wenn ich die Polynomdivision berechnet habe und die P-Q-Formel benutzt habe, bekomme ich [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 02.02.2012
Autor: schachuzipus

Hallo durden88,


> Berechne Sie das charaktristische Polynom, die Eigenwerte
> und die Eigenvektoren von [mm]A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\ 2&-2&1 }.[/mm]
> Ist A Diagonalisierbar?
>  Hallo, also mir gehts auch um die Schreibweisen. Ich
> rechne mal vor:
>  
> [mm]det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\ 2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8[/mm]

Mag sein ...

>  
> Was ist eigendlich mein Charakteristisches Polynom?

Na, das, was oben steht: [mm] $\chi(\lambda)=\lambda^3-5\lambda^2+2\lambda+8$ [/mm]

>  
> So jetzt will ich die 0-Stellen herausbekommen, also das
> ganze=0 und Polynomdivision benutzen:
>  
> Durch ausprobieren [mm]\lambda_1=2[/mm]
>  
> Dann bekomme ich durch die P-Q-Formel: [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]
>  
> So das waren die Eigenwerte oder?

Jo, wenn's stimmt, sind das die Eigenwerte

> Eigenvektoren berechne
> ich gleich noch. Jetzt hab ich noch eine Frage zur
> Diagonalisierbarkeit.
>  
> Ich habe gelernt, notwendige Bedingung: Die Funktion lässt
> sich vollständig in Linearfaktoren zerlegen. So und da hab
> ich mir einfach die Nullstellen genommen und multipliziert:
> [mm](\lambda-2)(\lambda-4)(\lambda+1)[/mm] und ausmultipliziert,
> also klappt das, kann ich es so machen?

Jo, hier hast du (zum Glück) 3 verschiedene Nullstellen, das Polynom zerfällt vollst. in (paarweise verschiedene) Linearfaktoren, damit ist für jeden Eigenwert die algebraische Vielfachheit 1, damit auch die geometrische Vielfachheit (denn geom. VFH [mm] $\le$ [/mm] algebr. VFH und alg. VFH mind. 1)

Damit kannst du sicher sein, dass die Matrix diagonalisierbar ist.

Krit.: Für jeden Eigenwert muss die algebraische VFH (also die VFH als Nullstelle im char. Polynom) gleich der geometr. VFH (=Dimension des zugeh. Eigenraumes) sein.

>  
> Hinreichende Bedingung: Die LF müssen paarweise
> verschieden sein. Jo und das klappt auch...
>  
> Wenn ich die Polynomdivision berechnet habe und die
> P-Q-Formel benutzt habe, bekomme ich [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]  

Das mag stimmen, aber ohne die Rechnung zu sehen, kann man das schlecht beurteilen ...

Gruß

schachuzipus


Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 02.02.2012
Autor: durden88

Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine Bedinungung hinschreiben.

Also zum ausrechnen des Charakteristischen Polynoms reicht es wenn ich schreibe: [mm] \chi(\lambda)= [/mm] Dann meine Matrix [mm] mit-\lambda [/mm] in der Diagonalen und dann die Determinante davon ausrechnen?

Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den Eigenvektoren? Gibt es da auch was, was ich hinschreiben kann, ich möchte nicht nur einfach [mm] \vec{x}= [/mm] hinschreiben...

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 02.02.2012
Autor: schachuzipus

Hallo nochmal,


> Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine
> Bedinungung hinschreiben.
>  
> Also zum ausrechnen des Charakteristischen Polynoms reicht
> es wenn ich schreibe: [mm]\chi(\lambda)=[/mm] Dann meine Matrix
> [mm]mit-\lambda[/mm] in der Diagonalen und dann die Determinante
> davon ausrechnen?

Jo, etwa so:

[mm]\chi(\lambda)=\operatorname{det}(A-\lambda\mathbb{E}_3)=\operatorname{det\left[ \ \pmat{...} \ \right]=...=\lambda^3...[/mm]

>  
> Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den
> Eigenvektoren? Gibt es da auch was, was ich hinschreiben
> kann, ich möchte nicht nur einfach [mm]\vec{x}=[/mm]
> hinschreiben...

Irgendwie so:

1) Berechne zu [mm]\lambda_1=...[/mm] den [mm]\operatorname{ker(A-\lambda_1\mathbb{E}_3)[/mm]:

Dann die Matrix hinschreiben und in ZSF bringen und so eine Basis des Kernes bestimmen.

Dann "Ein Eigenvektor zum Eigenwert [mm]\lambda_1=..[/mm] ist [mm]\vec{x}=...[/mm]"

Dann genauso für die anderen beiden Eigenwerte [mm]\lambda_{2,3}[/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]