matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonalisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierbarkeit
Diagonalisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 10.11.2009
Autor: ms2008de

Aufgabe
Untersuchen Sie, ob die lineare Abbildung [mm] \alpha: \IR^3 \to \IR^3 [/mm] mit [mm] \alpha \vektor{x_{1} \\ x_{2} \\ x_{3}}= \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}\vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] diagonalisierbar ist.

Hallo,

Also zunächst mal ist die Darstellungsmatrix A bzgl. der Standardbasis ja einfach A:= [mm] \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}. [/mm]
So nun hab ich über det(A- [mm] \lambda*E_{3})= [/mm] 0 die Eigenwerte berechnet und kam auf [mm] (-1)(\lambda +2)^2 (\lambda [/mm] -4) =0. Woraus folgt, dass [mm] \lambda_{1} [/mm] =-2 Eigenwert mit algebraischer Vielfachheit 2 ist und [mm] \lambda_{2} [/mm] = 4 Eigenwert mit algebraischer Vielfachheit 1 ist.
Nun muss laut Vorlesung die Summe der algebraischen Vielfachheiten der Eigenwerte gleich der Dimension des [mm] \IR^3 [/mm] entsprechen, also offensichtlich 3 und da es das tut, ist die Abbildung diagonalisierbar.

Stimmt das soweit?
Vielen Dank für eure Hilfe schon im voraus.

Viele Grüße

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 10.11.2009
Autor: angela.h.b.


> Untersuchen Sie, ob die lineare Abbildung [mm]\alpha: \IR^3 \to \IR^3[/mm]
> mit [mm]\alpha \vektor{x_{1} \\ x_{2} \\ x_{3}}= \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}\vektor{x_{1} \\ x_{2} \\ x_{3}}[/mm]
> diagonalisierbar ist.
>  Hallo,
>  
> Also zunächst mal ist die Darstellungsmatrix A bzgl. der
> Standardbasis ja einfach A:= [mm]\pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}.[/mm]
>  
> So nun hab ich über det(A- [mm]\lambda*E_{3})=[/mm] 0 die
> Eigenwerte berechnet und kam auf [mm](-1)(\lambda +2)^2 (\lambda[/mm]
> -4) =0. Woraus folgt, dass [mm]\lambda_{1}[/mm] =-2 Eigenwert mit
> algebraischer Vielfachheit 2 ist und [mm]\lambda_{2}[/mm] = 4
> Eigenwert mit algebraischer Vielfachheit 1 ist.
>  Nun muss laut Vorlesung die Summe der algebraischen
> Vielfachheiten der Eigenwerte gleich der Dimension des
> [mm]\IR^3[/mm] entsprechen,
>  also offensichtlich 3 und da es das tut,
> ist die Abbildung diagonalisierbar.
>  
> Stimmt das soweit?

Nein.

Für die Diagonalisierbarkeit muß die Summe der geometrischen Vielfachheiten auch =3 sein, dh. man braucht 3 linear unabhängige Eigenvektoren, was Du bisher noch nicht ausgerechnet hast.

Gruß v. Angela

>  Vielen Dank für eure Hilfe schon im voraus.
>  
> Viele Grüße


Bezug
                
Bezug
Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 10.11.2009
Autor: ms2008de

Danke nochmals,  
> Für die Diagonalisierbarkeit muß die Summe der
> geometrischen Vielfachheiten auch =3 sein, dh. man braucht
> 3 linear unabhängige Eigenvektoren, was Du bisher noch
> nicht ausgerechnet hast.

Sorry, hatte verdrängt, dass wir gesagt haben: eine Matrix A [mm] \in K^{n x n} [/mm] ist genau dann diagonalisierbar, wenn die Summe der algebraischen Vielfachheiten =n ist, UND die algebraische Vielfachheit des Eigenwerts [mm] \lambda_{i} [/mm] gleich der geometrischen Vielfachheit vom Eigenwert [mm] \lambda_{i} [/mm] ist, wobei i= 1,...,s.
Somit komm ich nun beim Eigenwert -2 auf die geometrische Vielfachheit 1, während die algebraische Vielfachheit 2 ist, woraus folgt, dass A nicht diagonalisierbar ist.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]