matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalisierbarkeit?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit?
Diagonalisierbarkeit? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit?: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 23.07.2008
Autor: Eroticus

Hallo und hallo erstmal :)

Wenn ich eine Matrix diagonalisieren mag sprich: diag(A) = [mm] S^T*A*S [/mm] bestimmen mag muss ich doch erstmal wie folgt vorgenen:

1. ist A Quatratisch ( A [mm] \in \IR^{nxn}) [/mm] ?
2. Falls A zufällig symetrisch ist dann ist A diag.-bar.
3. Eigenwerte bestimmen
4. Eigenvektoren bestimmen, Wenn ich bei A [mm] \in \IR^{nxn} \to [/mm] mindestens n unab. EV bekommt ist A diag.-bar.
5. die EW ergeben dann die diag. Einträge von D.

Ist das bis hierhin erstmal richtig? Wie bestimme ich aber nun S ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diagonalisierbarkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 23.07.2008
Autor: pelzig


> Wenn ich eine Matrix diagonalisieren mag sprich: diag(A) =
> [mm]S^T*A*S[/mm] bestimmen mag muss ich doch erstmal wie folgt
> vorgenen:
>  
> 1. ist A Quatratisch ( A [mm]\in \IR^{nxn})[/mm] ?
> 2. Falls A zufällig symetrisch ist dann ist A diag.-bar.
> 3. Eigenwerte bestimmen
> 4. Eigenvektoren bestimmen, Wenn ich bei A [mm]\in \IR^{nxn} \to[/mm]
> mindestens n unab. EV bekommt ist A diag.-bar.
> 5. die EW ergeben dann die diag. Einträge von D.
>  
> Ist das bis hierhin erstmal richtig? Wie bestimme ich aber
> nun S ?

Eigentlich ist alles richtig. S ist einfach die Matrix, in der du die $n$ linear unabhängigen Eigenvektoren als Spalten schreibst. Dann ist [mm] $S^{-1}AS=diag(\lambda_1,...,\lambda_n)$. [/mm] Im Allgemeinen ist jedoch [mm] $S^t\ne S^{-1}$! [/mm] Diese Form bekommst du, falls A symmetrisch ist und dann auch nur, wenn du die Eigenvektoren normierst, bevor du die Transformationsmatrix S daraus baust... (Spektralsatz).

Gruß, Robert

Bezug
                
Bezug
Diagonalisierbarkeit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mi 23.07.2008
Autor: Eroticus

Ah okay vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]