matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalisierbare Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Diagonalisierbare Matrizen
Diagonalisierbare Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbare Matrizen: frage zum nutzen
Status: (Frage) beantwortet Status 
Datum: 23:41 Mi 06.02.2008
Autor: lannigan2k

Hallo,

ich bin gerade dabei Lineare Algebra zu lernen und bin auf folgendes problem gestoßen:

angenommen ich hab eine Matrix a die diagonalisierbar ist also ähnlich zu einer diagonalmatrix D, in gleichungsform

[mm]A = S^{-1} D S[/mm]

und S besteht aus eigenvektoren von A.

ok mein ausgangsproblem ist, löse das LGS

[mm]Ax=b[/mm]

dann habe ich durch ähnlichkeitstrafo erhalten

[mm]( S^{-1} D S ) x = b[/mm]

aber was hilft mir das jetzt? haette ich

[mm]Dx=b^{'}[/mm]

mit [mm]b^{'}= S b S^{-1}[/mm], aber dann habe ich wieder viel mehr multiplikationen als in

[mm]Ax=b[/mm]


hilft mir die diagonalisierbarkeit hier nicht weiter? hilft diese nur z.b. bei matrixpotenzen? [mm]A^100[/mm] z.b.?

ich wär für anregungen sehr offen und erfreut, danke im voraus,

lannigan

PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diagonalisierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Do 07.02.2008
Autor: Zneques

Hallo,

Es ist im Großen und Ganzen genau wie du es schon sagst.
Für die Lösung von Ax=b muss man ja im Endeffekt auch diagonalisieren. (Gaußv.)
Jedoch hat man, um [mm] (S^{-1}DS)x=b [/mm] lösen zu können, den Mehraufwand, dass man auch S und [mm] S^{-1} [/mm] berechnen muss.
Es bringt also nur Vorteile, falls man öfter mit der Matrix arbeitet.
Wenn z.B. immerwieder der gleiche Arbeitsschritt anfällt, kann man den Raum vorher durch S in die Eigenvektorbasis transformieren, um dann nur noch [mm] Dx_s=b_s [/mm] mit [mm] x=S^{-1}x_s [/mm] lösen zu müssen.
Andererseit kann die Matrix ja auch zeitabhängig sein.
Also Matrixpotenzen wie [mm] A^{t}x=b. [/mm] Dann ist [mm] S^{-1}D^tS=b [/mm] leichter zu berechnen.

Ciao.

Bezug
                
Bezug
Diagonalisierbare Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Do 07.02.2008
Autor: angela.h.b.

  
> Es ist im Großen und Ganzen genau wie du es schon sagst.
>  Für die Lösung von Ax=b muss man ja im Endeffekt auch
> diagonalisieren. (Gaußv.)

Hallo,

beim Gaußverfahren bringt man zwar die Matrix durch elementare Zeilenumformungen bzw. Multiplikation mit Elementarmatrizen auf Diagonalgestalt, mit Diagonalisierung hat das aber nichts zu tun.

Gruß v. Angela


Bezug
                        
Bezug
Diagonalisierbare Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Do 07.02.2008
Autor: Zneques

Ok, das war wohl schlecht formuliert.
Mir ging es hauptsächlich darum den Aufwand der Berechnung zu vergleichen.
Es ist möglich mit einen Gauß-ähnlichen-Verfahren die Matrix A zur Matrix D zu diagonalisieren, indem man die Zeilen/Spalten von S bzw. [mm] S^{-1} [/mm] als Zeilen-/Spaltenoperationen auffasst. [mm] (SAS^{-1}=D) [/mm]
Da es dafür aber nur genau diese eine Möglichkeit gibt ist der Aufwand natürlich größer.
Die Verfahren sind ansonsten natürlich nicht wirklich vergleichbar.

Ciao.

Bezug
        
Bezug
Diagonalisierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Do 07.02.2008
Autor: angela.h.b.


> angenommen ich hab eine Matrix a die diagonalisierbar ist
> also ähnlich zu einer diagonalmatrix D, in gleichungsform
>  
> [mm]A = S^{-1} D S[/mm]
>  
> und S besteht aus eigenvektoren von A.
>  
> ok mein ausgangsproblem ist, löse das LGS
>
> [mm]Ax=b[/mm]

Hallo,

für die Lösung dieses Problems dürfte Dir die Diagonalisierung der Matrix nichts bringen.


>  
> dann habe ich durch ähnlichkeitstrafo erhalten
>  
> [mm]( S^{-1} D S ) x = b[/mm]

> [mm]Dx=b^{'}[/mm]
>  
> mit [mm]b^{'}= S b S^{-1}[/mm],

Du hättest das gar nicht, oder?

Denn: Dx=S b [mm] S^{-1} [/mm]  <==> [mm] S^{-1}DxS=b [/mm]


> hilft mir die diagonalisierbarkeit hier nicht weiter? hilft
> diese nur z.b. bei matrixpotenzen? [mm]A^{100}[/mm] z.b.?

Hierfür ist es auf jeden Fall nützlich.
Man benötigt Diagonalisierung bzw. Jordannormalform auch beim Lösen v. Differentialgleichungen.

Die Eigenwerte und Vektoren geben ja prinzipell sehr interessante Informationen über die vorliegende Abbildung, und wenn man die Basis entsprechend wählt, kann man diese Informationen direkt aus der Matrix ablesen, und für weitere Untersuchungen mit der passenden Basis durchführen.

(Wenn ich es z.B. mit Spiegelungen zu tun habe, würde ich natürlich als Basis ein angepaßtes Koordinatensystem wählen, weil ich dann viel einfacher rechnen kann.)

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]