matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDgl, bitte helfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Dgl, bitte helfen
Dgl, bitte helfen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dgl, bitte helfen: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 09:08 So 01.11.2009
Autor: moerni

Aufgabe
Definieren Sie eine Funktion f derart, dass sich folgende Differentialgleichungen in die Form y'(x)=f(x,y(x)) schreiben lassen und untersuchen Sie f auf Lipschitzstetigkeit in y.

[mm] a)(1-x^2)y' [/mm] - xy + 1 = 0, |x|<1
b)x'' + 5x' + 2x = cos(t)
c) [mm] \begin{cases} y_1' = -y_1 + \frac{1}{x} y_2 \\ y_2' = (1 - x)y_1 + y_2 \end{cases} [/mm] x>0

Hallo.
Das ist schon mein zweiter Versuch hier und ich hoffe mir kann jemand
helfen...


Ich bin mir bei meinen Lösungsansätzen nicht sicher:

zu a)
y'(x) = f(x,y(x)) = [mm] \frac{xy(x)-1}{1-x^2} [/mm]
Lipschitzstetigkeit erfüllt, denn:
[mm] |f(x,y_1(x))-f(x,y_2(x))|=...=|\frac{x}{1-x^2}||y_1(x)-y_2(x)| [/mm] definiere Lipschitzkonstanze L:= [mm] sup\{|\frac{x}{1-x^2}\}, [/mm] |x|<1
geht das so?

zu b)
Rückführung auf Dgl 1. Ordnung:
[mm] y_1(t):=x(t) [/mm]
[mm] y_2(t):=x'(t) [/mm]
F(t,x(t),x'(t)):=x''(t)
Dann ist [mm] $y'(t)=f(t,y(t))=\vektor{y_2(t)\\F(t,y_1(t),y_2(t)}$ [/mm]
wenn ich hier auf Lipschitzstetigkeit überprüfen will, kommen sehr lange Terme raus und ich finde die Verbindung nicht:
[mm] $|f(t,\overline{y}(t))-f(t,\tilde y(t))|=\sqrt{(\overline{y}_2(t)-\tilde y_2(t))^2+(-5\overline{y}_2(t)-2 \overline{y}_1(t)+5 \tilde y_2(t) + 2 \tilde y_1(t))^2}= ...?????....\le L\cdot{}|\overline{y}(t) [/mm] - [mm] \tilde [/mm] y(t)|$

wie geht das?

zu c)
[mm] $y'(x)=f(x,y(x))=\vektor{-y_1(x)+\bruch{1}{x}y_2(x)\\(1-x)y_1(x)+y_2(x)}$ [/mm]
stimmt das? wie geht das hier mit der Lipschitzstetigkeit?

grüße, moerni



        
Bezug
Dgl, bitte helfen: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 So 01.11.2009
Autor: Loddar

Hallo Moerni!


Du hast diese Frage bereits hier gestellt. Bitte unterlasse in Zukunft derartige Doppelposts.


Gruß
Loddar


Bezug
                
Bezug
Dgl, bitte helfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 So 01.11.2009
Autor: moerni

Entschuldigung.
Ja, das ist mir klar, dass ich die Frage schon mal ins Forum gestellt habe. Aber ich warte schon lange auf eine Antwort und brauche sie dringend. Ich habe gedacht, weil die Frage schon länger im Forum steht, dass sie nicht mehr gesehen wird und deswegen habe ich sie nochmal reingestellt. Außerdem habe ich ja eine weitere Frage dazu gestellt.
Ich hoffe sehr, dass mir bald geholfen wird.
grüße, moerni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]