Determinationskoeffizient < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:35 Sa 25.10.2014 | Autor: | mcmiri |
Aufgabe | Kann der Determinationskoeffizient >1 sein?? |
Ich arbeite gerade an der Umsetzung eines Prognosemodells und möchte zur Evaluation der Prognosen den Determinationskoeffizienten berechnen. Ich berechne ihn derzeit wie folgt (entweder über die erste oder über die zweite Formel):
[mm] R^{2}=1-\bruch{\summe_{i=1}^{n} (x_{p,i}-x_{i})}{\summe_{i=1}^{n} (x_{i}-\overline{x})}=\bruch{\summe_{i=1}^{n} (x_{p,i}-\overline{x})}{\summe_{i=1}^{n} (x_{i}-\overline{x})}
[/mm]
dabei ist [mm] x_{p,i} [/mm] der prognostizierte Wert zum Zeitpunkt i, [mm] x_{i} [/mm] ist der tatsächlich gemessene Wert zum Zeitpunkt i und [mm] \overline{x} [/mm] ist der Mittelwert aller tatsächlich gemessenen Werte im Zeitraum i=1...n. Ich habe Prognosen über ein ganzes Jahr und berechne den Koeffizienten für jeden einzelnen Tag, also jeweils über 24 Stunden.
Nun habe ich das Problem, dass bei beiden Formeln unterschiedliche Werte rauskommen und außerdem der Determinationskoeffizient häufig >1 ist.
Ist das möglich? Habe ich zwangsläufig einen Fehler gemacht? Oder bedeutet dies schlichtweg, dass die Prognosen nicht gut sind??
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:48 Sa 25.10.2014 | Autor: | luis52 |
> Ich berechne ihn
> derzeit wie folgt (entweder über die erste oder über die
> zweite Formel):
> dabei ist [mm]x_{p,i}[/mm] der prognostizierte Wert zum Zeitpunkt i,
> [mm]x_{i}[/mm] ist der tatsächlich gemessene Wert zum Zeitpunkt i
> und [mm]\overline{x}[/mm] ist der Mittelwert aller tatsächlich
> gemessenen Werte im Zeitraum i=1...n. Ich habe Prognosen
> über ein ganzes Jahr und berechne den Koeffizienten für
> jeden einzelnen Tag, also jeweils über 24 Stunden.
Das kann nicht stimmen, im Nenner steht immer null. Du meinst vermutlich
$ [mm] R^{2}=1-\bruch{\summe_{i=1}^{n} (x_{p,i}-x_{i})^\red{2}}{\summe_{i=1}^{n} (x_{i}-\overline{x})^\red{2}}=\bruch{\summe_{i=1}^{n} (x_{p,i}-\overline{x})^\red{2}}{\summe_{i=1}^{n} (x_{i}-\overline{x})^\red{2}} [/mm] $.
|
|
|
|