matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeDeterminantenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Numerik linearer Gleichungssysteme" - Determinantenberechnung
Determinantenberechnung < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 14:38 So 07.11.2004
Autor: Mow-Sy

Ich habe eine Frage:
Es gibt ein eindeutig lösbares LGS Ax=b mit n Unbekannten und n Gleichungen. Somit ist ja die Koeffiezientenmatrix A eine (n x n)-Matrix.
Die Determinante dieser Matrix soll jetzt "direkt nach Definition als Produktsumme" berechnet werden.
Kann mir jemand dieses Berechnungsverfahren erklären? (Leibniz???)
Und wieviele Punktoperationen enthält dieses Verfahren in abhängigkeit von n?
Vielen Dank, Mow-Sy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Determinantenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 07.11.2004
Autor: sany

ja, leibniz-formel
[]http://de.wikipedia.org/wiki/Determinante

hab leider keine schöne formel gefunden:
f(1) = 0
f(2) = 2
f(n) = n*f(n-1)+n für alle n>2

aber kannst natürlich die rekurente gleichung auflösen und es mir sagen ;)
oder ein stück maple würde helfen, kanns ja morgen versuchen...

(das oben ist nur für det(A)), man braucht noch ein paar mehr für die Divisionen und b(i), aber das bleibt als übungsaufgabe ;)

bis morgen beim Cromme, auch wenn ich keine Ahnung hab, wer du bist ;)

sany


Bezug
        
Bezug
Determinantenberechnung: Anzahl der Operationen
Status: (Antwort) fertig Status 
Datum: 12:32 Mo 08.11.2004
Autor: mathemaduenn

Hallo Mow-Sy,

[mm] \det(A) [/mm] = [mm] \sum_{\sigma \in S_n} (\operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i, \sigma(i)}) [/mm]
Worüber wird summiert?
Oder wieviele Permutationen gibt es?
Wieviele Operationen müssen pro Summand ausgeführt werden?
gruß
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]