matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminanten und lin. Unabh.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Determinanten und lin. Unabh.
Determinanten und lin. Unabh. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten und lin. Unabh.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Di 07.03.2006
Autor: D.Koyu

Hi alle zusammen :),

zwei Fragen habe ich:

1. Was für Schlüsse kann ich alles daraus ziehen, wenn die Determinante einer Matrix A null ergibt, vor allem in Bezug auf Eigenwerte/Eigenvektoren, Diagonalisierbarkeit, Lösbarkeit eines LGS?

2. Was für Schlüsse kann ich daraus ziehen, wenn die Eigenvektoren der Matrix A linear unabhängig bzw. abhängig sind?

Wenn mir das mal jemand auf den Punkt zusammenfassen könnte, dann wäre ich sehr glücklich ^^ :). Danke schon mal im Vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Determinanten und lin. Unabh.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Di 07.03.2006
Autor: felixf


> Hi alle zusammen :),
>  
> zwei Fragen habe ich:
>  
> 1. Was für Schlüsse kann ich alles daraus ziehen, wenn die
> Determinante einer Matrix A null ergibt, vor allem in Bezug
> auf Eigenwerte/Eigenvektoren, Diagonalisierbarkeit,
> Lösbarkeit eines LGS?

Nun, du weisst das 0 ein Eigenwert von $A$ ist, und der Eigenraum zu $0$ entspricht dem Kern von $A$. (Das siehst du direkt, wenn du dir das Charakteristische Polynom an der Stelle $x=0$ anschaust, und die Definition von Eigenraum zum Eigenwert $0$.)

Diagonalisierbar ist so eine Matrix im Allgemeinen nicht, nimm etwa eine beliebige quadratische nicht diagonalisierbare Matrix und haeng rechts und unten eine Spalte bzw. Zeile mit nur 0'en drin an: Die entstehende Matrix ist ebenfalls nicht diagonalisierbar und ihre Determinante ist $0$.

Wenn du ein LGS a la $A x = b$ hast, und [mm] $\det [/mm] A = 0$ ist, dann ist das LGS i.A. nicht loesbar: Fuer spezielle Wahlen von $b$ gibt es zwar eine Loesung, aber nicht fuer alle (die Dimension des Bildes von $A$ muss echt kleiner als die Dimension des Raumes sein, siehe Dimensionsformel, womit das Bild von $A$ nicht der ganze Raum sein kann und es also solche $b$ gibt). Wenn es allerdings Loesungen gibt, dann mehrere, da der Kern nichttrivial ist.

> 2. Was für Schlüsse kann ich daraus ziehen, wenn die
> Eigenvektoren der Matrix A linear unabhängig bzw. abhängig
> sind?

Zwei Eigenvektoren zu zwei verschiedenen Eigenwerten sind immer linear unabhaengig.

Wenn du zwei Eigenvektoren zum gleichen Eigenwert hast, dann kann es natuerlich vorkommen das der eine ein Vielfaches vom anderen ist und sie deshalb linear abhaengig sind. Zu einer interessanten Aussage wird es erst, wenn je zwei Eigenvektoren zum gleichen Eigenwert linear abhaengig sind: Dann bedeutet das gerade, das der Eigenraum die Dimension 0 oder 1 hat, wobei Dimension 0 nur dann auftritt, wenn es gar keinen Eigenvektor zu diesem Eigenwert gibt.

Hilft dir das?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]