matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminanten mit komplexen Z.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Determinanten mit komplexen Z.
Determinanten mit komplexen Z. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten mit komplexen Z.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:49 So 30.11.2008
Autor: Analysisgott

Aufgabe
Berechnen sie für folgende Matrizen die Determinanten: (i² = −1)

[mm] \pmat{ 2i & 1 & 3i-2 \\ -1 & 2i+6 & 0\\ 3i-2 & 2i+3 & 3i-6 } [/mm]

und

[mm] \pmat{ 1 & 2i & 4-4i \\ 0 & 0 & 1\\ 1 & 2i & 4-4i} [/mm]

Wie muss das aussehen mit komplexen Zahlen? Ich weiß einfach nicht wie das funktioniert und was da rauskommen muss. Ich wüsste nicht mal wie die Determinante aussehen muss.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinanten mit komplexen Z.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 30.11.2008
Autor: schachuzipus

Hallo Analysisgott,

> Berechnen sie für folgende Matrizen die Determinanten: (i²
> = −1)
>  
> [mm]\pmat{ 2i & 1 & 3i-2 \\ -1 & 2i+6 & 0\\ 3i-2 & 2i+3 & 3i-6 }[/mm]
>  
> und
>  
> [mm]\pmat{ 1 & 2i & 4-4i \\ 0 & 0 & 1\\ 1 & 2i & 4-4i}[/mm]
>  
> Wie muss das aussehen mit komplexen Zahlen? Ich weiß
> einfach nicht wie das funktioniert und was da rauskommen
> muss. Ich wüsste nicht mal wie die Determinante aussehen
> muss.

Das geht genauso wie im Reellen ;-)

Die erste Determinante kannst du zB. stur mit der Regel von Sarrus angehen, rechne einfach mal los

Bei der zweiten würde ich mal ganz scharf hinsehen.

Wenn du da nach der 2.Zeile gem. Laplace entwickelst, hast du doch nur [mm] $(-1)\cdot{}\det\pmat{1&2i\\1&2i}$ [/mm]

Na?

Oder du siehst direkt, dass die erste Zeile gleich der dritten ist, damit also die Matrix nicht invertierbar, also $det(B)=0$

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Determinanten mit komplexen Z.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 So 30.11.2008
Autor: reverend

Du könntest auch "sehen", dass die 2. Spalte genau ein Vielfaches der 1. Spalte ist. Ergebnis wie vorher: Determinante Null.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]