matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDeterminante einer Matrix.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Determinante einer Matrix.
Determinante einer Matrix. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante einer Matrix.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Do 29.01.2009
Autor: Thomas87

Aufgabe
A = [mm] \pmat{ b+8c & 2c-2b & 4b-4c \\ 4c-4a & c + 8a & 2a-2c \\ 2b-2a & 4a-4b & a + 8b } [/mm]

P = [mm] \pmat{0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0} [/mm]

Berechnen Sie [mm] P^{-1}, P^{-1}AP [/mm] und die Determinanten der Matrizen A, P und [mm] P^{-1}. [/mm] Für welche a,b,c ist A invertierbar? Ist A diagonalisierbar?

Mein Problem liegt erstmal darin die Determinante bei A zu ermitteln. Ich habe es nach Gauß versucht in die Diagonalform zu bringen, um die Diagonale zu multiplizieren, aber ich kriege es nicht hin. Gibt es da einen Trick für solche Matrizen?

        
Bezug
Determinante einer Matrix.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Do 29.01.2009
Autor: Al-Chwarizmi


> A = [mm]\pmat{ b+8c & 2c-2b & 4b-4c \\ 4c-4a & c + 8a & 2a-2c \\ 2b-2a & 4a-4b & a + 8b }[/mm]
>
>  Mein Problem liegt erstmal darin die Determinante bei A zu
> ermitteln. Ich habe es nach Gauß versucht in die
> Diagonalform zu bringen, um die Diagonale zu
> multiplizieren, aber ich kriege es nicht hin. Gibt es da
> einen Trick für solche Matrizen?


Für die Determinante von 3x3-Matrizen gibt es die

             MBRegel_von_Sarrus


Gruß    


Bezug
                
Bezug
Determinante einer Matrix.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Do 29.01.2009
Autor: Thomas87

Ja, aber ich dachte, dass ich die Form eh brauche, wenn ich sagen will, für welche a,b,c invertierbar sind. Oder kann ich das auch anders feststellen?

Bezug
                        
Bezug
Determinante einer Matrix.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Do 29.01.2009
Autor: Steffi21

Hallo, du wirst um die Berechnung der Determinante mit der Regel von Sarrus nicht rum kommen, um zu zeigen, ob eine Matrix invertierbar ist, muß ja die Detrminante ungleich Null sein, das Ganze wird auf ein Gleichungssystem mit zwei Parametern führen, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]