matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDeterminante der Hessematrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Determinante der Hessematrix
Determinante der Hessematrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante der Hessematrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Fr 04.07.2014
Autor: geigenzaehler

Aufgabe
hat die Determinante der Hessematrix detH=detf'' Bedeutung für Extrema einer Fktn f?


Hallo,

hat die Determinante der Hessematrix detH=detf'' Bedeutung für Extrema einer Fktn f?

Wir hatten Determinanten und Eigenwerte noch nicht (dafür aber Definitheit über die quadratische Form definiert), aber die Bedingungen für die Art der Extrema stehen "ausgeschrieben" im Skript und dieses Ausgeschriebene sieht aus wie die detH.

f: [mm] R^2->R [/mm] 2x stetig diffb.

Es läuft hinaus auf: (bzgl. Extrema in entsprechendem Pkt p mit f'(p)=0)
detH<0 -> f hat in entspr. Pkt.  einen Sattelpkt
detH>0 ->  f hat in entspr. Pkt.  lok. Max., falls [mm] \bruch{ \partial f^2(p)}{\partial x^2}<0 [/mm]
                                                lok. Min., falls [mm] \bruch{ \partial f^2(p)}{\partial x^2}>0 [/mm]


Und wie kommen diese Bedingungen zustande?

[mm] [/mm]

        
Bezug
Determinante der Hessematrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Fr 04.07.2014
Autor: Ladon

Hallo geigenzaehler,

vielleicht kennst du folgendes Determinantenkriterium.
[mm] $A=\pmat{ a_{11} & ... & a_{1n} \\ ... & & ... \\ a_{n1} & ... & a_{nn} }$, [/mm] setze [mm] A_1=(a_11), A_2=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] usw., d.h. [mm] A_k=\pmat{ a_{11} & ... & a_{1k} \\ ... & & ... \\ a_{k1} & ... & a_{kk} }. [/mm]
Dann gilt:
(I) A ist positiv definit genau dann, wenn [mm] $det(A_k)>0$ [/mm] $ [mm] \forall [/mm] k=1,...,n$.
(II) A ist negativ definit genau dann, wenn [mm] $(-1)^kdet(A_k)>0$ $\forall [/mm] k=1,...,n$.
Wende diesen Satz jetzt auf das Kriterium zweiter Ordnung für Extremstellen an.

Es gilt ja bekanntlich:
Sei [mm] U\subseteq\IR^n [/mm] offen, [mm] f:U\to\IR [/mm] zweimal stetig partiell differenzierbar. Sei [mm] $p\in [/mm] U$ mit [mm] $\nabla [/mm] f(p)=0$ (Kriterium erster Ordnung).
Ist H(p) positiv definit, dann ist p lokale Minimumstelle von f.
Ist H(p) negativ definit, dann ist p lokale Maximumstelle von f.
Ist H(p) indefinit, dann ist p echte Sattelstelle von f.

Nun wenden wir das ganze mal auf deinen Fall von [mm] f:\IR^2\to\IR [/mm] an. Dann ist [mm] H(x)=\pmat{ \partial_1\partial_1 f(x) & \partial_2\partial_1 f(x) \\ \partial_1\partial_2 f(x) & \partial_2\partial_2 f(x) }. [/mm] Damit muss für positiv definite H(x) nach dem Determinantenkriterium [mm] det(\pmat{ \partial_1\partial_1 f(x) & \partial_2\partial_1 f(x) \\ \partial_1\partial_2 f(x) & \partial_2\partial_2 f(x) })>0 [/mm] und [mm] det(\partial_1\partial_1 f(x))=\partial_1\partial_1 [/mm] f(x)>0 sein. Für negativ definite H(x) muss [mm] (-1)^2det((\pmat{ \partial_1\partial_1 f(x) & \partial_2\partial_1 f(x) \\ \partial_1\partial_2 f(x) & \partial_2\partial_2 f(x) })=det((\pmat{ \partial_1\partial_1 f(x) & \partial_2\partial_1 f(x) \\ \partial_1\partial_2 f(x) & \partial_2\partial_2 f(x) })>0 [/mm] und [mm] (-1)det(\partial_1\partial_1 f(x))=(-1)\partial_1\partial_1 [/mm] f(x)>0 sein.

MfG Ladon

Bezug
                
Bezug
Determinante der Hessematrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Sa 05.07.2014
Autor: geigenzaehler

Danke f d engagierten Beitrag. Ich muss es mir "bei Zeiten" genauer anchauen u melde mich dann nochmals.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]