matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Determinante berechnen
Determinante berechnen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 06.01.2009
Autor: T_sleeper

Aufgabe
Berechnen Sie die Determinante der [mm] n\times n[/mm]-Matrix [mm]A=(a_{ij})[/mm] mit den Einträgen [mm] a_{ij}=(i+j-1) [/mm]
für alle [mm] i,j \in {1,2,...,n}[/mm]

Hallo,
um mit der Aufgabenstellung besser arbeiten zu können habe ich mir mal die Matrix aufgeschrieben. Die sollte dann hoffentlich so aussehen:
[mm] (a_{ij})=\begin{pmatrix}1 & 4 & 9 & \cdots & n^{2}\\ 4 & 9 & ... & & (n+1)^{2}\\ 9 & ... & & & (n+2)^{2}\\ \vdots & & & & \vdots\\ n^{2} & (n+1)^{2} & (n+2)^{2} & ... & (2n-1)^{2}\end{pmatrix}[/mm].
Stimmt das soweit?
Wie komme ich jetzt am besten auf die Determinante. Ich werd daraus nämlich nicht schlau.
Was ich mir bisher gedacht habe ist, dass ich eventuell Vertauschungen durchführen müsste. Da komme ich dann aber auch nicht mit weiter.
Dann dachte ich mir, dass man vielleicht mit dem binomischen Lehrsatz argumentieren könnte, also [mm] (i+j-1)^2 [/mm] einfach entsprechend anders schreibt.

Aber das bringt mich alles nicht so richtig voran. Welcher Ansatz ist der vernünftigste?

        
Bezug
Determinante berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 06.01.2009
Autor: steppenhahn


> Berechnen Sie die Determinante der [mm]n\times n[/mm]-Matrix
> [mm]A=(a_{ij})[/mm] mit den Einträgen [mm]a_{ij}=(i+j-1)[/mm]
> für alle [mm]i,j \in {1,2,...,n}[/mm]
>  Hallo,
>  um mit der Aufgabenstellung besser arbeiten zu können habe
> ich mir mal die Matrix aufgeschrieben. Die sollte dann
> hoffentlich so aussehen:
>  [mm](a_{ij})=\begin{pmatrix}1 & 4 & 9 & \cdots & n^{2}\\ 4 & 9 & ... & & (n+1)^{2}\\ 9 & ... & & & (n+2)^{2}\\ \vdots & & & & \vdots\\ n^{2} & (n+1)^{2} & (n+2)^{2} & ... & (2n-1)^{2}\end{pmatrix}[/mm].
> Stimmt das soweit?
>  Wie komme ich jetzt am besten auf die Determinante. Ich
> werd daraus nämlich nicht schlau.
>  Was ich mir bisher gedacht habe ist, dass ich eventuell
> Vertauschungen durchführen müsste. Da komme ich dann aber
> auch nicht mit weiter.
>  Dann dachte ich mir, dass man vielleicht mit dem
> binomischen Lehrsatz argumentieren könnte, also [mm](i+j-1)^2[/mm]
> einfach entsprechend anders schreibt.
>  
> Aber das bringt mich alles nicht so richtig voran. Welcher
> Ansatz ist der vernünftigste?

Hallo!

Mit der Angabe in der Aufgabenstellung komme ich auf die Matrix:

[mm](a_{ij})=\begin{pmatrix}1 & 2 & 3 & \cdots & n\\ 2 & 3 & ... & & n+1\\ 3 & ... & & & n+2 \\ \vdots & & & & \vdots\\ n & n+1 & n+2 & ... & 2n-1\end{pmatrix}[/mm]

Zum Beispiel ist [mm] a_{1_{2}} [/mm] = 1+2 - 1 = 2

Diese Determinante dürfte relativ flott zu berechnen sein, indem man die erste Zeile von jeder der darauffolgenden abzieht. Dann entsteht eine Matrix, in welcher die 2. Zeile mit Einsen, die 3. Zeile mit Zweien, ... gefüllt ist. Die Zeilen sind also linear abhängig --> :-) Was ist die Determinante?

Grüße,

Stefan.

Bezug
                
Bezug
Determinante berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 06.01.2009
Autor: T_sleeper

Okay. Dann hättest du mit deiner Matrix natürlich recht. Aber mir ist ein Fehler unterlaufen. Die Einträge sind [mm] a_{ij}=(i+j-1)^2 [/mm].

Passt meine Matrix dann?
Nun kann man den Trick mit dem Abziehen der ersten Zeile nicht mehr machen. Wie geht man also am besten vor?

Bezug
                        
Bezug
Determinante berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 06.01.2009
Autor: steppenhahn

Hallo!

Ja, dann stimmt deine Matrix. Ich empfehle trotzdem, die Zeilen voneinander abzuziehen:

[mm] $n^{2}-(n-1)^{2} [/mm] = 2n-1$

[mm] $(n-1)^{2}-(n-2)^{2} [/mm] = 2n-3$

[mm] $(n-2)^{2}-(n-3)^{2} [/mm] = 2n-5$

Für ein kleines Beispiel, das allgemeine überlasse ich dir :-) :

[mm] \pmat{ 1 & 4 & 9 & 16 & 25 \\ 4 & 9 & 16 & 25 & 36 \\ 9 & 16 & 25 & 36 & 49 \\ 16 & 25 & 36 & 49 & 64 \\ 25 & 36 & 49 & 64 & 81 } [/mm]

--> nach Abzug der 4. von der 5. Zeile:

[mm] \pmat{ 1 & 4 & 9 & 16 & 25 \\ 4 & 9 & 16 & 25 & 36 \\ 9 & 16 & 25 & 36 & 49 \\ 16 & 25 & 36 & 49 & 64 \\ 9 & 11 & 13 & 15 & 17 } [/mm]

--> nach Abzug der 3. von der 4. Zeile, etc.:

[mm] \pmat{ 1 & 4 & 9 & 16 & 25 \\ 3 & 5 & 7 & 9 & 11 \\ 5 & 7 & 9 & 11 & 13 \\ 7 & 9 & 11 & 13 & 15 \\ 9 & 11 & 13 & 15 & 17 } [/mm]

--> nach Abzug der 4. von der 5. Zeile:

[mm] \pmat{ 1 & 4 & 9 & 16 & 25 \\ 3 & 5 & 7 & 9 & 11 \\ 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 } [/mm]

... Nun ja, was passiert nun :-)

Allerdings sollte man evtl noch kleine nxn-Matrizen wie 2x2 extra betrachten.

Grüße,

Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]