matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 04.06.2009
Autor: neddi

Aufgabe
Zeigen Sie: sind a, b, c [mm] \in \IR [/mm] paarweise verschieden, so ist die Determinante
[mm] \vmat{ 1 & 1 & 1 \\ a & b & c \\ a² & b² & c² } \not=0. [/mm]

Ich würde beginnen, dass wenn a,b,c paarweise verschieden sein sollen, dann ist [mm] a\not=b\not=c [/mm] und mann würde rechnen
[mm] det=(1*b*c²)+(1*c*a²)+(1*a*b²)-(1*b*a²)-(1*c*b²)-(1*a*c²)\not=0 [/mm]

[mm] det=bc²+ca²+ab²-ba²-cb²-ac²\not=0 [/mm]

Gegenbeispiel: Wenn man jetzt davon ausgeht, dass a=b=c dann ist det=3a³-3a³=0
Wenn man [mm] a=b\not=c [/mm] dann erhält man det=ac²+ca²+a³-a³-ca²-ac²=0 desshalb muss [mm] a\not=b\not=c [/mm] sein.

Meine Frage wäre nun ob das als Beweis ausreicht, oder wie man es anders machen kann?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Do 04.06.2009
Autor: kegel53

Ich würde sagen, dass du so nicht vorgehen kannst, denn du sollst ja zeigen dass die Determinante ungleich 0 ist und kannst dies wie in deinem Fall nicht von vorneherein annehmen.

Nimm einfach mal o.B.d.A. an dass a=0 und überleg dir warum dann die Determinante nicht 0 sein kann.
Der Fall [mm] a\not=0, b\not=0, c\not=0 [/mm] für paarweise verschiedene [mm] a,b,c\in\IR [/mm] sollte danach natürlich auch noch betrachtet werden, wobei der ziemlich klar sein dürfte.

Bezug
        
Bezug
Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 04.06.2009
Autor: barsch

Hallo,

entwickel (LaPlace) einmal nach der 3. Zeile und dann siehe die Hinweise von kegel53.

Gruß barsch



Bezug
        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 05.06.2009
Autor: angela.h.b.


> Zeigen Sie: sind a, b, c [mm]\in \IR[/mm] paarweise verschieden, so
> ist die Determinante
>  [mm]\vmat{ 1 & 1 & 1 \\ a & b & c \\ a² & b² & c² } \not=0.[/mm]

Hallo,

Du kannst hier Zeilenumformungen vornehmen, s. die Regeln fürs Berechnen von Determinanten.

Subtrahierst Du das a-fache der 1. Zeile von der 2.Zeile und  das [mm] a^2-fache [/mm] der 1. Zeile von der 3.Zeile, so hast Du

[mm] \vmat{ 1 & 1 & 1 \\ a & b & c \\ a² & b² & c² } =\vmat{ 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b²-a^2 & c²-a^2 } . [/mm]

Und weiter? Du solltest auf Dreiecksform kommen...

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]