matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: linear in jeder Spalte
Status: (Frage) beantwortet Status 
Datum: 23:27 Mi 28.03.2018
Autor: sancho1980

Hallo

in meinem Lehrbuch steht:

"Die Determinante ist linear in jeder Spalte. D.h. es gilt
[mm] det(a_1, [/mm] ..., [mm] a_j [/mm] + [mm] b_j, [/mm] ..., [mm] a_n) [/mm] = [mm] det(a_1, [/mm] ..., [mm] a_j, [/mm] ..., [mm] a_n) [/mm] + [mm] det(a_1, [/mm] ..., [mm] b_j, [/mm] ..., [mm] a_n) [/mm]
und
[mm] det(a_1, [/mm] ..., [mm] ka_j, [/mm] ..., [mm] a_n) [/mm] = [mm] kdet(a_1, [/mm] ..., [mm] a_j, [/mm] ..., [mm] a_n) [/mm] für k [mm] \in [/mm] K."

Kann mir das mal einer erklären? Ich verstehe die Schreibweise nicht? Was ist [mm] a_1, a_j, a_n, b_j? [/mm] Sind das Zeilen Spalten? Kann das mal einer am Beispiel verdeutlichen?

Gruß und Danke

Martin

        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Do 29.03.2018
Autor: ChopSuey

Hallo,


>  
> Kann mir das mal einer erklären? Ich verstehe die
> Schreibweise nicht? Was ist [mm]a_1, a_j, a_n, b_j?[/mm] Sind das
> Zeilen Spalten?

Spalten.


> Kann das mal einer am Beispiel
> verdeutlichen?

Du kannst jede Matrix $ A$ spaltenweise angeben, in der Form

$ A = [mm] (a_1,a_2,...,a_n)$ [/mm]

dann bezeichnen die Vektoren [mm] $a_1, [/mm] ... , [mm] a_n$ [/mm] die Spalten der Matrix $ A$.

Konkret: $ A = [mm] \pmat{ 1 & 2 \\ 3 & 4 }$ [/mm] mit $ [mm] a_1 [/mm] = [mm] \vektor{1 \\ 3}$ [/mm] und [mm] $a_2 [/mm] = [mm] \vektor{2 \\ 4}$ [/mm]


>  
> Gruß und Danke
>  
> Martin

LG,
ChopSuey


Bezug
        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Do 29.03.2018
Autor: HJKweseleit

Beispiel:

det [mm] \pmat{ 1 & 2 &7\\ 3 & 4 &8 \\ 1 & 4 & 9} [/mm] = 22



det [mm] \pmat{ 1 & 1+1 &7\\ 3 & 2+2 &8 \\ 1 & 3+1 & 9} [/mm] = 22


det [mm] \pmat{ 1 & 1 &7\\ 3 & 2 &8 \\ 1 & 3 & 9} [/mm] = 24

det [mm] \pmat{ 1 & 1 &7\\ 3 & 2 &8 \\ 1 & 1 & 9} [/mm] = -2

Die Summe der letzten beiden gibt wieder 22.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]