matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante-Invertierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Determinante-Invertierbarkeit
Determinante-Invertierbarkeit < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante-Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 05.01.2009
Autor: Lucy234

Aufgabe
Es sei [mm] D_{2} [/mm] : [mm] M_{2,2}(K) \to [/mm] K die aus der Vorlesung bekannte Determinante, die für A [mm] :=\pmat{ a & b \\ c & d } [/mm]
durch [mm] D_{2}(A) [/mm] := ad − bc definiert ist.

a) Zeigen Sie, dass [mm] D_{2} [/mm] eine Determinantenfunktion ist.
b) Zeigen Sie, dass für zwei Matrizen A,B [mm] \varepsilon M_{2,2}(K) [/mm]
[mm] D_{2}(AB) [/mm] = [mm] D_{2}(A)D_{2}(B) [/mm]
gilt und folgern Sie damit, dass A genau dann invertierbar ist, wenn [mm] D_{2}(A) \not= [/mm] 0.

Hallo, ich konnte bis jetzt die Teilaufgabe a zeigen, und dass [mm] D_{2}(AB)=D_{2}(A)*D_{2}(B) [/mm] gilt. Aber wie kann ich daraus schließen, dass A invertierbar ist, wenn [mm] D_{2}(A) \not=0 [/mm] ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinante-Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Mo 05.01.2009
Autor: schachuzipus

Hallo Lucy234,

> Es sei [mm]D_{2}[/mm] : [mm]M_{2,2}(K) \to[/mm] K die aus der Vorlesung
> bekannte Determinante, die für A [mm]:=\pmat{ a & b \\ c & d }[/mm]
>  
> durch [mm]D_{2}(A)[/mm] := ad − bc definiert ist.
>  
> a) Zeigen Sie, dass [mm]D_{2}[/mm] eine Determinantenfunktion ist.
>  b) Zeigen Sie, dass für zwei Matrizen A,B [mm]\varepsilon M_{2,2}(K)[/mm]
>  
> [mm]D_{2}(AB)[/mm] = [mm]D_{2}(A)D_{2}(B)[/mm]
>  gilt und folgern Sie damit, dass A genau dann invertierbar
> ist, wenn [mm]D_{2}(A) \not=[/mm] 0.
>  Hallo, ich konnte bis jetzt die Teilaufgabe a zeigen, und
> dass [mm]D_{2}(AB)=D_{2}(A)*D_{2}(B)[/mm] gilt. Aber wie kann ich
> daraus schließen, dass A invertierbar ist, wenn [mm]D_{2}(A) \not=0[/mm]
> ist?

Naja, du hast ja in Teil 2 von (b) eine Äquivalenz zu zeigen, also die Richtung

(1) $A$ invertierbar [mm] $\Rightarrow D_2(A)\neq [/mm] 0$

(2) [mm] $D_2(A)\neq 0\Rightarrow [/mm] A$ invertierbar

Die Richtung (1) ist einfach, wenn $A$ invertierbar ist, so existiert [mm] $A^{-1}$ [/mm]

und es ist [mm] $D_2(AA^{-1})=D_2(E)=1=D_2(A)\cdot{}D_2(A^{-1})$ [/mm] nach Teil 1 von (b)

Daraus folgt, dass [mm] $D_2(A)\neq [/mm] 0$  Warum?

Die andere Richtung (2) ist etwas vertrackter, nehmen wir $A$ mit den Einträgen wie oben, dann ist mit [mm] $D_2(A)\neq [/mm] 0$ insbesondere [mm] $ad-bc\neq [/mm] 0$

Also auch [mm] $\frac{1}{ad-bc}\neq [/mm] 0$

Versuche mal, ob es die Matrix [mm] $X:=\frac{1}{ad-bc}\cdot{}\pmat{d&-b\\-c&a}$ [/mm] als Inverse zu $A$ tut, falls ja, so hast du eine, also die Inverse zu $A$ gefunden, und es ist [mm] $X=A^{-1}$ [/mm]


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Determinante-Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Di 06.01.2009
Autor: Lucy234


> Naja, du hast ja in Teil 2 von (b) eine Äquivalenz zu
> zeigen, also die Richtung
>  
> (1) [mm]A[/mm] invertierbar [mm]\Rightarrow D_2(A)\neq 0[/mm]
>  
> (2) [mm]D_2(A)\neq 0\Rightarrow A[/mm] invertierbar
>  
> Die Richtung (1) ist einfach, wenn [mm]A[/mm] invertierbar ist, so
> existiert [mm]A^{-1}[/mm]
>  
> und es ist [mm]D_2(AA^{-1})=D_2(E)=1=D_2(A)\cdot{}D_2(A^{-1})[/mm]
> nach Teil 1 von (b)
>  
> Daraus folgt, dass [mm]D_2(A)\neq 0[/mm]  Warum?

[mm] D_{2}(A^{-1}) [/mm] existiert ja nach  Voraussetzung. Dann muss ich die Gleichung [mm] 1=D_{2}(A)*D_{2}(A^{-1}) [/mm] nach   [mm] D_{2}(A^{-1}) [/mm] umstellen können. Das geht aber nur, wenn [mm] D_{2}(A)\not=0 [/mm] ist,weil ich sonst nicht dadurch teilen darf. Kann ich das so folgern?

> Die andere Richtung (2) ist etwas vertrackter, nehmen wir [mm]A[/mm]
> mit den Einträgen wie oben, dann ist mit [mm]D_2(A)\neq 0[/mm]
> insbesondere [mm]ad-bc\neq 0[/mm]
>  
> Also auch [mm]\frac{1}{ad-bc}\neq 0[/mm]
>  
> Versuche mal, ob es die Matrix
> [mm]X:=\frac{1}{ad-bc}\cdot{}\pmat{d&-b\\-c&a}[/mm] als Inverse zu [mm]A[/mm]
> tut, falls ja, so hast du eine, also die Inverse zu [mm]A[/mm]
> gefunden, und es ist [mm]X=A^{-1}[/mm]
>  
>
> >  

> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>
>
> LG
>  
> schachuzipus

Bezug
                        
Bezug
Determinante-Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Di 06.01.2009
Autor: SEcki


> [mm]D_{2}(A^{-1})[/mm] existiert ja nach  Voraussetzung. Dann muss
> ich die Gleichung [mm]1=D_{2}(A)*D_{2}(A^{-1})[/mm] nach  
> [mm]D_{2}(A^{-1})[/mm] umstellen können. Das geht aber nur, wenn
> [mm]D_{2}(A)\not=0[/mm] ist,weil ich sonst nicht dadurch teilen
> darf. Kann ich das so folgern?

Öhm, eigentlich folgt aus einer Gleichung [m]ab=1[/m] sofort, dass weder a noch b gleich 0 sind. Also die Behauptung.

SEcki

Bezug
        
Bezug
Determinante-Invertierbarkeit: ...oder etwas einfacher
Status: (Antwort) fertig Status 
Datum: 00:12 Di 06.01.2009
Autor: reverend

Hallo lucy234, [willkommenvh]

Wenn A invertierbar ist, dann gilt ja für [mm] A^{-1} [/mm] folgendes:
[mm] A*A^{-1}=E [/mm]

Nun ist [mm] \det{E}=1=D_2(E) [/mm]

Mit dem von Dir gezeigten Zusammenhang [mm] D_2(AB)=D_2(A)*D_2(B) [/mm] folgt, wenn man [mm] B=A^{-1} [/mm] einsetzt:

[mm] 1=D_2(E)=D_2(AA^{-1})=D_2(A)*D_2(A^{-1}) [/mm]

unter Auslassung der mittleren beiden Schritte: [mm] 1=D_2(A)*D_2(A^{-1}) [/mm]

> "...folgern Sie damit, dass A genau dann invertierbar
> ist, wenn [mm] D_{2}(A)\not=0." [/mm]

Grüße,
reverend

Bezug
                
Bezug
Determinante-Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:35 Di 06.01.2009
Autor: schachuzipus

Hallo reverend,

welch bahnbrechende Neuigkeit hat sich in deiner Antwort versteckt?

Steht das nicht fast exakt so oben schon?

;-)

Aber doppelt hält bekanntlich besser ...


LG

schachuzipus

Bezug
                        
Bezug
Determinante-Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:47 Di 06.01.2009
Autor: reverend

Hallo schachuzipus,

wie Du siehst und zu Recht anmerkst, ist da keine einzige bahnbrechende Neuigkeit.

Mir schien nur Deine Erläuterung etwas umfänglich, oder soll ich sagen, vollständig? Nimms mir nicht übel, ich wollte Dich keineswegs korrigieren, dazu bestand ja auch kein Anlass. Ich suchte nur, wie die Überschrift ja auch andeutet, eine einfachere Fassung.

Auf gute Zusammenarbeit (und überhaupt ein gutes neues Jahr!),
reverend

Bezug
                                
Bezug
Determinante-Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:51 Di 06.01.2009
Autor: schachuzipus

Hallo nochmal,
natürlich nehme ich's dir nicht übel - wieso auch?

Aber es ist doch eine Äquivalenz zu zeigen und du hast exakt das hingeschrieben, was ich zu der einen Richtung (1) auch geschrieben habe ...

Ich sehe da halt keine Vereinfachung oder Verkürzung, es ist bei dir lediglich die Reihenfolge der Faktoren vertauscht


Gruß

schachuzipus

Bezug
                                        
Bezug
Determinante-Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:06 Di 06.01.2009
Autor: reverend

Diskutieren wir gerade über Didaktik oder Wahrheit?
Im letzteren Fall hast Du ja ohne Zweifel Recht, und wir sagen das gleiche (bis auf die wirklich unwesentliche Reihenfolge der Faktoren).

Und für die Didaktik, bei aller vermeintlichen Wissenschaftlichkeit, gilt meist noch das de gustibus non est disputandum. Das einzige, was mir da wesentlich ist, ist dass lucy234 Deinen oder meinen Tipp versteht. Dabei geht es nur um die Darbietungsform, inhaltlich habe ich mich nur beschränkt.



Bezug
        
Bezug
Determinante-Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Di 06.01.2009
Autor: Lucy234

Jetzt hab ich es glaub ich. Vielen Dank euch allen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]