matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDet von ähnlichen Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Determinanten" - Det von ähnlichen Matrizen
Det von ähnlichen Matrizen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Det von ähnlichen Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Di 28.09.2010
Autor: folken

Aufgabe
Sei
S = [mm] \pmat{ 1 & 4 & 2i & 0 \\ 0 & 2 & i & 6 \\ 0 & 0 & 7i & 1 \\ 0 & 0 & 0 & 3 } [/mm]

Berechnen sie [mm] det(SAS^{-1}) [/mm]

Hallo,

die Lösung dieser Aufgabe ist mir bekannt:

[mm] det(SAS^{-1}) [/mm] = [mm] det(S)*det(A)*det(S^{-1}) [/mm] = det(A) = 1

Was ich nicht verstehe ist, wie man darauf kommt ,dass die det(A)= 1 ist, ohne die Matrix A zu kennen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Di 28.09.2010
Autor: wieschoo

Verheimlichst du uns noch etwas, wie [mm]SAS^{-1}=\pmat{ ? & \cdots & ?\\ \vdots & \ddots & \vdots\\ ? & \cdots & ?}[/mm]

Denn A kann alles möglich sein (Einheitsmatix,...). Welche Form hat [mm]SAS^{-1}[/mm]?


Bezug
                
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Di 28.09.2010
Autor: folken

Nein die Aufgabe ist genauso wie ich sie aufgeschrieben habe.
Aber ich hätte meine Frage etwas anders formulieren sollen:
Ist es überhaupt möglich auf diese Lösung zu kommen, ohne die Matrix A zu kennen.
Das ist der Aufgabenteil b, es gibt noch einen Aufgabenteil a, wobei mir dieser nicht
vorliegt.

Bezug
        
Bezug
Det von ähnlichen Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Di 28.09.2010
Autor: angela.h.b.


> Sei
>  S = [mm]\pmat{ 1 & 4 & 2i & 0 \\ 0 & 2 & i & 6 \\ 0 & 0 & 7i & 1 \\ 0 & 0 & 0 & 3 }[/mm]
>  
> Berechnen sie [mm]det(SAS^{-1})[/mm]

Hallo,

wenn Du einzig und allein die Matrix S gegeben hast, kann das nicht gelingen.

Sofern Dir allerdings die Matrix [mm] SAS^{-1} [/mm] oder [mm] det(SAS^{-1}) [/mm] zur Verfügung steht,kennst  Du auch det A.

Gruß v. Angela


Bezug
                
Bezug
Det von ähnlichen Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Di 28.09.2010
Autor: folken

Danke für die Antwort. Das wollte ich wissen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]