matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraDerivationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Derivationen
Derivationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Derivationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Di 15.05.2012
Autor: Joan2

Aufgabe
Es sei R (kommutativer) Ring mit $D : R [mm] \to [/mm] R$ Derivation.
Sind D(a), D(b) Derivationen, dann auch $D(a)a + D(b)b$ eine Derivation.

Weiß jemand was man da zeigen muss?
Ist das nicht einfach die Definition?


Gruß
Joan

        
Bezug
Derivationen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 15.05.2012
Autor: fred97


> Es sei R (kommutativer) Ring mit [mm]D : R \to R[/mm] Derivation.
>  Sind D(a), D(b) Derivationen, dann auch [mm]D(a)a + D(b)b[/mm] eine
> Derivation.
>  Weiß jemand was man da zeigen muss?
> Ist das nicht einfach die Definition?

Lautet die Aufgabe wirklich so ?

Wenn D eine Derivation ist, so gilt

             D(xy)=xD(y)+D(x)y  für alle x,y [mm] \in [/mm] R

Das ist die Definition einer Derivation.

Sind a,b [mm] \in [/mm] R ?  Wenn ja, so sind D(a) und D(b) ebenfals Elemente des Ringes R und damit ist auch [mm]D(a)a + D(b)b[/mm] [mm] \in [/mm] R.

Also irgendetwas stimmt nicht, oder ich bin zu blöd.

Mit D(a) kann auch nicht die zu a geh. innere Derivation [mm] D_a [/mm] gemeint sein, also

    [mm] D_a(x)=xa-ax, [/mm]

denn R soll ja kommutativ sein ( dann ist [mm] D_a(x)=0 [/mm] für alle x [mm] \in [/mm] R).

FRED

          


>  
>
> Gruß
>  Joan


Bezug
                
Bezug
Derivationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 15.05.2012
Autor: Joan2

Oh nein, ich hab die Aufgabe falsch abgetippt :(

Es sollte heißen: $D(a)b+D(b)a$

Gilt das denn oder muss es $D(ab)=aD(b)+D(a)b$  für alle $a,b [mm] \in [/mm]  R$ heißen?

Bezug
                        
Bezug
Derivationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Di 15.05.2012
Autor: fred97


> Oh nein, ich hab die Aufgabe falsch abgetippt :(
>  
> Es sollte heißen: [mm]D(a)b+D(b)a[/mm]
>  
> Gilt das denn oder muss es [mm]D(ab)=aD(b)+D(a)b[/mm]  für alle [mm]a,b \in R[/mm]
> heißen?

Das ändert nichts an meinen Bedenken !

FRED


Bezug
                                
Bezug
Derivationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mi 16.05.2012
Autor: Joan2

Ich hab irgendwie noch kein Aha.

Muss nicht überprüft werden, dass diese Rechtskombination auch eine Derivation ist? Ich kann doch nicht einfach sagen
"D(a) und D(b) sind Elemente des Ringes R und damit ist auch $ D(a)b + D(b)a $ $ [mm] \in [/mm] $ R" oder?????

Bezug
                                        
Bezug
Derivationen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Mo 21.05.2012
Autor: felixf

Moin!

> Ich hab irgendwie noch kein Aha.
>
> Muss nicht überprüft werden, dass diese Rechtskombination
> auch eine Derivation ist? Ich kann doch nicht einfach sagen
> "D(a) und D(b) sind Elemente des Ringes R und damit ist
> auch [mm]D(a)b + D(b)a[/mm] [mm]\in[/mm] R" oder?????

Die Aufgabenstellung macht so keinen Sinn. Wenn $D : R [mm] \to [/mm] R$ eine Derivation sind, dann sind $D(a)$ und $D(b)$ Elemente aus $R$, und damit keine Derivationen auf $R$. Das gleiche gilt fuer $R$-Linearkombinationen solcher.

Da stimmt also irgendetwas nicht.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]