matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenDer Pegelstand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Trigonometrische Funktionen" - Der Pegelstand
Der Pegelstand < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Der Pegelstand: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:53 Fr 09.02.2007
Autor: mary88

Aufgabe

a)Gegeben ist die Funktion f (x)= 1,5+cos(2*x)+2*cos(x) [mm] x\varepsilon(-5;5) [/mm]
Die x-Achse und die y-Achse begrenzen im 1. Feld eine Fläche.
Bestimme u>0 so, dass die Gerade x=u diese Fläche halbiert.

b)Aufgrund von Ebbe und Flut gab es folgenden Pegelstand:
Tiefstand von 2,84m  am 17. Mai um 20.18 nächster Hochstand von 5.38m am 18. Mai um 2.30.
Ermittle den möglichen Term der trigonometrischen Funktion f, welche den Pegelstand in Abhängigkeit von der Zeit t=0 am 17. Mai um 20.18 beschreibt.

bei Aufgabe a verstehe ich nicht was das 1. Feld ist und welches meine Fläche ist die berechnen soll?

bei aufgabe b verstehe ich nicht wie man auf die trigonometrische Funktion kommen soll?...

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

        
Bezug
Der Pegelstand: Aufgabe a
Status: (Antwort) fertig Status 
Datum: 16:36 Fr 09.02.2007
Autor: clwoe

Hi,

mit erster Fläche ist der erste Quadrant gemeint. Du hast also einen Funktionsgraphen der im ersten Quadranten eine Fläche einschließt. Du sollst nun eine Gerade x=u finden, die die Fläche so vertikal begrenzt, dass die komplette Fläche die der Graph einschließt, durch diese Gerade halbiert wird. Das bedeutet du musst folgende Gleichung lösen.

[mm] \integral_{0}^{u}{1,5+cos(2x)+2cos(x) dx}=\bruch{1}{2}\integral_{0}^{5}{1,5+cos(2x)+2cos(x) dx} [/mm]

Bei Aufgabe b) bin ich mir selbst nicht ganz sicher, da sie etwas komisch gestellt ist. Ich denke du sollst dir einfach eine trigonometrische Funktion überlegen, die zum Zeitpunkt t=0 den Tiefststand wiedergibt.

Also z.B. f(t)=2,84cos(t) für t=0.
Oder auch f(t)=x*sin(t)+2,84cos(t) für [mm] x\in \IR [/mm] und t=0

Mir fällt jetzt im Moment nichts anderes ein, wie man es noch machen könnte. Also Möglichkeiten gibt es viele, den Wert bei t=0 durch die Verknüpfung von sin und cos zu erreichen, da ja der Sinus dort immer 0 ist und der Cosinus dort immer 1 ist. Das du eine Funktion finden sollst die beide Pegelstände in Abhängigkeit von t darstellt ist meines Erachtens etwas schwierig, denn dann müsste man ein Gleichungssystem mit sin und cos lösen und das traue ich mir im Moment nicht wirklich zu.

Gruß,
clwoe


Bezug
        
Bezug
Der Pegelstand: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Fr 09.02.2007
Autor: nimrod

Hiho!

Also ich hätte da mal einen Hinweis zu b):

Gesucht ist eine trigonometrische Funktion, d.h. eine Funktion der Form
       y(t)=a*sin(bt + c)       (allgemeine Sinusfunktion)
bzw.
       y(t)=a*cos(bt + c)      (allgemeine Cosinusfunktion).

Der Parameter c beschreibt jeweils die Verschiebung der Funktion entlang der x-Achse. Ich meine, der kann mit Null gleichgesetzt werden, wenn man die allg. Sinusfunktion verwendet. Du musst jetzt also nur noch die Parameter a und b bestimmen. Glücklicherweise sind in der Aufgabenstellung 2 Punkte der gesuchten Funktion gegeben gegeben, nämlich der Tiefstand y=2,84 bei der Zeit t=0 und der Hochstand y=5,38 bei t=6h12min, was man vielleicht noch in eine passende Einheit (min, oder sek) umrechnen sollte. Setzt du die Punkte in die allg. Sinusfunktion ein, erhälst du 2 Gleichungen mit den 2 Unbekannten a und b, die sich somit leicht errechnen lassen.

MfG nim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]