matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDelta-Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Delta-Funktion
Delta-Funktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 17.09.2007
Autor: beta81

Aufgabe
[mm] \phi(R-R^{''})=\delta_{R-R^{'},1}+\delta_{R^{'}-R,1} [/mm]
[mm] D(R-R^{'})=\delta_{R,R^{'}}\summe_{R^{''}}\phi(R-R^{''})-\phi(R-R^{'})=2\delta_{R,R^{'}}-\delta_{R-R^{'},1}-\delta_{R^{'}-R,1} [/mm]
[mm] F(R)=-\summe_{R^{'}}D(R-R^{'})u(R^{'})=-[2u(R)-u(R-1)-u(R+1)] [/mm]

Hallo,

kann mir bitte einer sagen, wie man auf das Ergebnis der zweiten und dritten Zeile kommt?

Danke!
Gruss beta

        
Bezug
Delta-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 17.09.2007
Autor: rainerS

Hallo beta,

ich bin mir nicht ganz sicher, weil mir die Notation nicht geläufig ist, aber ich probiers mal.

> [mm]\phi(R-R^{''})=\delta_{R-R^{'},1}+\delta_{R^{'}-R,1}[/mm]
>  
> [mm]D(R-R^{'})=\delta_{R,R^{'}}\summe_{R^{''}}\phi(R-R^{''})-\phi(R-R^{'})=2\delta_{R,R^{'}}-\delta_{R-R^{'},1}-\delta_{R^{'}-R,1}[/mm]
>  
> [mm]F(R)=-\summe_{R^{'}}D(R-R^{'})u(R^{'})=-[2u(R)-u(R-1)-u(R+1)][/mm]
>  Hallo,
>  
> kann mir bitte einer sagen, wie man auf das Ergebnis der
> zweiten und dritten Zeile kommt?

Die zweite Zeile folgt meiner Meinung nach nur durch Einsetzen von [mm]\phi(R-R'')[/mm]
[mm]\summe_{R''}\phi(R-R'') = \summe_{R''}\delta_{R-R',1}+\summe_{R''}\delta_{R'-R,1} = 1+1=2[/mm]

Für die  dritte Zeile benutzt du die Definition von [mm]\delta[/mm]:

[mm]\summe_{R'}\delta_{R,R'}u(R') = \summe_{R'}\delta_{R',R}u(R')= u(R)[/mm]

und die Verschiebungsregel:

[mm]\delta_{R,R'-a} = \delta_{R+a,R'}[/mm]

Viele Grüße
Rainer

Bezug
                
Bezug
Delta-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 17.09.2007
Autor: beta81

hallo rainer,

warum ist

>  [mm]\summe_{R''}\delta_{R-R',1}+\summe_{R''}\delta_{R'-R,1} = 1+1[/mm] ? Ich seh das nicht!

Mit der

>  Verschiebungsregel:
>  
> [mm]\delta_{R,R'-a} = \delta_{R+a,R'}[/mm]

komm ich leider auch nicht drauf.

Gruesse beta


Bezug
                        
Bezug
Delta-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 17.09.2007
Autor: rainerS

Hallo beta,

> warum ist
>
> >  [mm]\summe_{R''}\delta_{R-R',1}+\summe_{R''}\delta_{R'-R,1} = 1+1[/mm]

> ? Ich seh das nicht!

Wende die Definition von [mm]\delta[/mm] mit [mm]u\equiv 1[/mm] an.

> Mit der
>
> >  Verschiebungsregel:

>  >  
> > [mm]\delta_{R,R'-a} = \delta_{R+a,R'}[/mm]
>  komm ich leider auch
> nicht drauf.


[mm]F(R)=-\summe_{R'}D(R-R')u(R') [/mm]
[mm]= - \left(\summe_{R'} 2\delta_{R,R'}u(R')-\summe_{R'}\delta_{R-R',1}u(R')-\summe_{R'}\delta_{R'-R,1}u(R')\right)[/mm]
[mm]= - \left(2 u(R) -\summe_{R'}\delta_{R-1,R'} u(R') -\summe_{R'}\delta_{R',R+1}u(R')\right)[/mm]
[mm]= - \left(2 u(R) -u(R-1) -u(R+1)\right) [/mm]

Viele Grüße
  Rainer

Bezug
                                
Bezug
Delta-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mo 17.09.2007
Autor: beta81

Danke! Hab's verstanden!

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]