matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauDehnung am Stab
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maschinenbau" - Dehnung am Stab
Dehnung am Stab < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dehnung am Stab: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 17.05.2011
Autor: al3pou

Aufgabe
Der dargestellt Stab mit der Länge l und der Dehnsteifigkeit EA wird belastet durch die veränderliche Streckenlast n(x) = [mm] n_{0} [/mm] * [mm] \bruch{x}{l}. [/mm]
Bestimmen Sie jeweils den Verschiebungsverlauf sowie die Längenänderung.
Geg.: l, EA, n(x)

[Dateianhang nicht öffentlich]

Hallo :-),

ich habe erstmal durch die Naviersche Gleichung

u(x) = [mm] -\bruch{1}{6} [/mm] * [mm] \bruch{n_{0}}{EA*l} x^{3} [/mm] + [mm] C_{1}x [/mm] + [mm] C_{2} [/mm]

aufgestellt. Dann weiß ich ja, dass sich der Stab am linken Ende nicht verschieben kann also

u(0) = 0  [mm] \Rightarrow C_{2} [/mm] = 0

Wie mache ich jetzt weiter? Mir fällt keine weiter Randbedingung ein oder wäre N(x = l) = [mm] n_{0}? [/mm]

LG

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Dehnung am Stab: Randbedingungen
Status: (Antwort) fertig Status 
Datum: 11:26 Do 19.05.2011
Autor: Loddar

Hallo al3pou!


Es gelten noch folgende Randbedingungen:

[mm]N(x=0) \ = \ \bruch{1}{2}*n_0*\ell[/mm]

[mm]N(x=\ell) \ = \ 0[/mm]


Gruß
Loddar


Bezug
                
Bezug
Dehnung am Stab: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:04 Do 19.05.2011
Autor: al3pou

n(x) ist doch die Ableitung von N. Wie können dann diese beiden Randbedingungen gelten und wie würde ich damit dann die Dehnung des Stabes errechnen? Einfach [mm] \epsilon [/mm] (l) oder [mm] \Delta [/mm] l = [mm] \epsilon [/mm] * l ??? Was mich auch stört, ich habe zu der Aufgabe die Lösungen und hier steht

  u(x) = [mm] \bruch{n_{0}}{EA} (\bruch{1}{2}x^{2} [/mm] - [mm] \bruch{1}{3}\bruch{x^{3}}{l}) [/mm]

Wie kommt man denn darauf??

LG

Bezug
                        
Bezug
Dehnung am Stab: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 21.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]