matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieDefinitionsfrage Maß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Definitionsfrage Maß
Definitionsfrage Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsfrage Maß: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:25 Mi 29.12.2010
Autor: freimann

Hallo,

Unsere Definition eines Maßes war folgende:
Sei X eine Menge
Ist A eine sigma-Algebra über X und
[mm] \mu: A\to [0,\infty] [/mm] sigma-additiv, dann heißt [mm] \mu [/mm] ein Maß auf A und [mm] (X,A,\mu) [/mm] heißt Maßraum.

Da [mm] \mu [/mm] sigma-additiv ist, folgt: [mm] \mu [/mm] ist
- sigma-subadditiv,
- additiv,
- subadditiv.

Jetzt hatten wir folgende Aufgabe:
[mm] B\subset [/mm] P(X) war gegeben (P(X) soll die Potenzmenge von X sein) und eine Abbildung
[mm] \mu: B\to [0,\infty]. [/mm]
B war eine Algebra, aber keine sigma-Algebra.
Die Aufgabenstellung war:
Ist [mm] \mu [/mm] ein additives oder subadditives Maß?
Das passt nun garnicht mit unserer Definition zusammen. Ein Maß muss laut Def. ja auf einer Sigma-Algebra definiert sein und ist dann auch immer additiv und subadditiv. Vermutlich sollte man zeigen, ob [mm] \mu [/mm] als Abbildung additiv oder subadditiv ist?


Jetzt ist eine andere Aufgabenstellung wieder ähnlich formuliert.
Man soll zeigen, dass
[mm] \mu=\summe_{k=0}^{\infty}s_{k}\delta_{a_{k}} [/mm] ein additives Maß auf P(X) ist, wobei X eine nicht leere Menge, [mm] s_{k}>0, \summe_{k=0}^{\infty}s_{k}<\infty, a_{k} \in [/mm] X, [mm] a_{k} [/mm] paarweise disjunkt und [mm] \delta_{a_{k}} [/mm] das Dirac-Maß mit Träger in a ist.
Was soll ich hier denn nun tun? Zeigen, dass [mm] \mu [/mm] ein Maß ist, oder zeigen, dass die Abbildung [mm] \mu [/mm] additiv ist? Ich will keine Lösungshinweise für die Aufgabe, sondern nur wissen, wie das mit dem "additven Maß" gemeint ist.

Danke an jeden, der hier für Entwirrung sorgen kann und das auch tut!

LG,
freimann


Und das noch:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Definitionsfrage Maß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Fr 31.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]