matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisDefinitionsbereich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Definitionsbereich
Definitionsbereich < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 16.10.2004
Autor: Substituierer

Hallo!

Muss der Definitionsbereich einer Funktion mit Parameter (also einer Schar) immer auf einen Bereich beschränkt sein oder darf es bei unterschiedlichem Parameter auch zwei Definitionsbereiche geben?

Also:
t<0  Defitionsbereich 1
t>0  Defitionsbereich 2

Danke schon im voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 16.10.2004
Autor: ziska

hallo!
> Hallo!
>  
> Muss der Definitionsbereich einer Funktion mit Parameter
> (also einer Schar) immer auf einen Bereich beschränkt sein
> oder darf es bei unterschiedlichem Parameter auch zwei
> Definitionsbereiche geben?
>  

Es MUSS nicht sein, aber es ist gut möglich, dass es zwei verschiedene Definitionsmengen gibt.  meistens ist dann die entscheidung, ob t<0 oder t>0 ist, aber es gibt glaube auch andre entscheidungsmöglichkeiten.

auf jeden Fall muss stets eine fallunterscheidung gemacht werden, um zumindestens zu kontrollieren, ob die eine definitionsmenge allgemein für die funktionsschar gilt oder ob noch ne andre def-menge gilt. ich hoffe , ich konnte dir weiterhelfen.
falls du bei deiner vorliegenden funktionsschar nicht klarkommst, dann kannst du ja einfach wieder nachfragen.
also, viel spaß bei mathe.... ;-)

LG;
ziska

Bezug
                
Bezug
Definitionsbereich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Sa 16.10.2004
Autor: Substituierer

Danke, damit wäre meine Frage beantwortet. Ich war mir eben nur nicht sicher, ob eine Funktionsschar auch unterschiedliche Definitionsbereiche haben kann, oder nur eine haben darf.

Danke nochmal und noch ein schönes Wochenende.

LG

Bezug
                        
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 19.10.2004
Autor: Substituierer

Nun lässt mir das Problem doch keine Ruhe und ich poste am Besten mal meine Funktionsgleichung:

f(x) = [mm] \bruch {2x²}{\wurzel {x} - t} [/mm]

Gibt es jetzt für die Funktionenschar zwei Definitionsbereiche oder kann ich schreiben D=[mm] \IR [/mm] ohne {t²} ?

Grüße
Substituierer

Bezug
                                
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Di 19.10.2004
Autor: Stefan

Hallo Substituierer!

Es gilt:

[mm] $D_f [/mm] = [mm] \IR \setminus \{t^2\}$ [/mm] für $t [mm] \ge [/mm] 0$

und

[mm] $D_f [/mm] = [mm] \IR$ [/mm] für $t<0$.

Im Fall $t<0$ ist der Nenner immer positiv (da die Wurzel nicht-negativ ist). Ansonsten (also im Falle $t [mm] \ge [/mm] 0$) gibt es genau eine Nullstelle des Nenners; diese liegt bei [mm] $x=t^2$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]