matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDefinition von Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Definition von Konvergenz
Definition von Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition von Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Fr 08.12.2006
Autor: Lepkuchen

Hallo!

Die Definition von konvergenten Folgen lautet ja folgendermaßen:

Es gibt ein k > k0 und

|a(n) - a| < [mm] \varepsilon, [/mm] so ist a lim a(n).

Nur: Was hat es mit diesem k>k0 aufsich?

Wird auch oft bei etlichen Beweisen verwendet. Man sagt dann: Es gibt ein m>n>n0... Aber was heißt denn das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Definition von Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Fr 08.12.2006
Autor: angela.h.b.


> Hallo!
>  
> Die Definition von konvergenten Folgen lautet ja
> folgendermaßen:
>  
> Es gibt ein k > k0 und
>  
> |a(n) - a| < [mm]\varepsilon,[/mm] so ist a lim a(n).

Hallo,

es ist ganz wichtig, daß Du die Definitionen genau wiedergeben kannst, sonst geht leicht Wesentliches verloren!
Also: 1. korrekt nachplappern
        2. sich um die Inhalte bemühen und die Sache verstehen.
        3. Aus einem Verständnis der Angelegenheit heraus korrekt wiedergeben.


Die Folge a(n) konvergiert gegen a  (in Zeichen [mm] \limes_{n\rightarrow\infty}a(n)=a) [/mm] ) genau dann, wenn gilt:

Zu jedem [mm] \varepsilon>0 [/mm] findet man ein [mm] k_0 \in \IN, [/mm] so daß für jedes k, welches größer als [mm] k_0 [/mm] ist, gilt

|a(n) - a| [mm] <\varepsilon [/mm] .


>  
> Nur: Was hat es mit diesem k>k0 aufsich?

|a(n) - a|  ist der Abstand, den das Folgenglied a(n) von a hat.
Mit dem [mm] \varepsilon [/mm] gibst Du Dir einen (beliebig kleinen) Abstand vor.

Die Definition sagt: egal, wie winzig klein ich den Abstand [mm] \varepsilon [/mm] vorgebe, ab einem bestimmten Folgenglied rücken alle Folgenglieder mindestens so dicht an a heran, daß sie nicht weiter als [mm] \varepsilon [/mm] von a entfernt sind. Keines tanzt mehr aus der Reihe, Und dieses Folgenglied, ab welchem alle Folgenglieder genügend dicht an a liegen, ist das [mm] k_0. [/mm]

Nun, da das [mm] \varepsilon [/mm] beliebig klein sein darf, nähert sich die Folge beliebig dicht dem a.


>
> Wird auch oft bei etlichen Beweisen verwendet.

Wenn du mit dem [mm] \varepsilon-Kriterium [/mm] Konvergenz zeigen willst - bzw. mußt - brauchst Du zu vorgegebenem [mm] \varepsilon [/mm] ein passendes [mm] k_0, [/mm] ab welchem die Folgenglieder dann genügend dicht an den zu beweisenden Grenzwert heranrücken. Dieses [mm] k_0 [/mm] hängt in der Regel vom [mm] \varepsilon [/mm] ab.
Das kann man sich ja auch vorstellen: wenn ich den erlaubten Abstand verkleinere, wird es etwas länger dauern, bis ich zu den Folgegliedern komme, die in der entsprechenden Umgebung liegen.

Man sagt

> dann: Es gibt ein m>n>n0... Aber was heißt denn das?

Daß es ein m mit eben der Eigenschaft gibt.
Ohne Zusammenhang kann ich da jetzt nicht mehr sagen.

Falls du einen bestimmten Beweis aus der Vorlesung oder so nicht verstehst, kannst du ihn ja mal aufschreiben und an den entsprechenden Stellen deine Fragen und Bedenken.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]