matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisDefinition von <= bei lin. Op.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Definition von <= bei lin. Op.
Definition von <= bei lin. Op. < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition von <= bei lin. Op.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 23.10.2014
Autor: Samyy

Hallo,

Sei H ein Hilbertraum und [mm] $T,S:H\rightarrow [/mm] H$ zwei Projektionen in H. Dann sehe ich manchmal die Notation [mm] $T\leq [/mm] S$. Was hat das zu bedeuten?

Verwendet man dieses Symbol nur im Zusammenhang mit Projektionen, oder hat dies auch für allgemeine lineare Abbildungen einen Sinn?

Würde mich freuen, wenn mir da jemand helfen könnte.

Viele Grüße

        
Bezug
Definition von <= bei lin. Op.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Do 23.10.2014
Autor: andyv

Hallo,

man schreibt für zwei s.a. Operatoren $S,T [mm] \in [/mm] L(H)$ [mm] $S\le [/mm] T$ falls die entsprechende Ungleichung für die zugehörigen quadr. Formen gilt, d.h. [mm] $\le [/mm] <x|Tx>$ [mm] $\forall [/mm] x [mm] \in [/mm] H$.
Insbesondere macht also die Schreibweise für beliebige lineare Operatoren keinen Sinn. Andererseits brauchen die Operatoren auch keine Projektoren zu sein.

Liebe Grüße

Bezug
                
Bezug
Definition von <= bei lin. Op.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:53 Fr 24.10.2014
Autor: Samyy

Vielen Dank!!

Bezug
        
Bezug
Definition von <= bei lin. Op.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Fr 24.10.2014
Autor: fred97


> Hallo,
>  
> Sei H ein Hilbertraum und [mm]T,S:H\rightarrow H[/mm] zwei
> Projektionen in H. Dann sehe ich manchmal die Notation
> [mm]T\leq S[/mm]. Was hat das zu bedeuten?

Ergänzend: für beliebige Projektionen T und S macht T [mm] \le [/mm] S keinen Sinn. Ich denke , Du hast vergessen zu sagen, dass T und S Orthogonalprojektionen sein sollen, also idempotent und selbstadjungiert.


>
> Verwendet man dieses Symbol nur im Zusammenhang mit
> Projektionen, oder hat dies auch für allgemeine lineare
> Abbildungen einen Sinn?

Wie mein Vorredner schon sagte: für selbstadjungierte Operatoren.

FRED

>  
> Würde mich freuen, wenn mir da jemand helfen könnte.
>  
> Viele Grüße


Bezug
                
Bezug
Definition von <= bei lin. Op.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Fr 24.10.2014
Autor: Samyy

Hallo fred97,

Danke auch dir für deine Antwort.  

Sehe ich das richtig, dass ich die selbstadjungiertheit nur bei komplexen Hilberträumen voraussetzen muss? Im reellen fall macht die definiton doch auch für nicht s.a. opratoren Sinn oder?

Des weiteren hast du recht. Ich dachte an orthogonalprojektionen, die dann per def idempotent sind. Andere Projektionen kenne ich ehrlich gesagt auch nicht.  Kannst du mir sagen, was das ist?

Grüße

Bezug
                        
Bezug
Definition von <= bei lin. Op.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 24.10.2014
Autor: fred97


> Hallo fred97,
>  
> Danke auch dir für deine Antwort.  
>
> Sehe ich das richtig, dass ich die selbstadjungiertheit nur
> bei komplexen Hilberträumen voraussetzen muss?


> Im reellen
> fall macht die definiton doch auch für nicht s.a.
> opratoren Sinn oder?

Ja, das kann man machen, aber üblich ist das nicht.


>  
> Des weiteren hast du recht. Ich dachte an
> orthogonalprojektionen, die dann per def idempotent sind.
> Andere Projektionen kenne ich ehrlich gesagt auch nicht.  
> Kannst du mir sagen, was das ist?

Ganz allgemein: ist V ein Vektorraum und P:V [mm] \to [/mm] V linear, so heißt P eine Projektion, wenn [mm] P^2=P [/mm] ist.

FRED

>  
> Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]