matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenDefinition einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Definition einer Funktion
Definition einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Fr 27.10.2006
Autor: Kampfhase

Aufgabe
Welche der folgenden Koordinatendiagramme definieren eine Funktion ?

[Dateianhang nicht öffentlich]

Hallo zusammen !

Irgendwie hab ich bei einer der Dinge hier meine Schwierigkeiten ...

a) und c) sind klar:

a) keine Funktion, da der 1 sowohl die 1 und die 3 zugeordnet werden ...
c) Funktion: laut Definition: jedem x wird genau ein y zugeordnet ...


Irgendwie scheint mir b) aber unklar zu sein.

Dem v wird eigentlich gar kein Wert zugeordnet, dies müsste aber laut Definition einer Funktion ("jedem x [mm] \in [/mm] D wird genau ein [mm] y\in [/mm] W zugeordnet") aber so sein ==> keine Funktion.
Was ist aber, wenn ich an der Stelle v z.B. eine Definitionslücke habe und mein v gar nicht [mm] \not\in [/mm] Definitionsmenge ? Dann wäre es doch auch eine Funktion ?


Wäre nett, wenn mich hier einer über meine Unwissenheit aufklären könnte !? Vielen Dank schon mal jetzt !

Viele Grüße !



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Definition einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 27.10.2006
Autor: DesterX

Hallo Kampfhase.

Du hast schon recht. Ob dies nun eine Funktion ist oder aber nicht, hängt von der Wahl des Definitionsbereiches ab.

Wählen wir ihn als D={u,v,w} handelt es sich um keine Funktion, wie du selber schon richtig erklärst.
Allerdings würde eine Funktion f: D' -> {1,2,3} mit D'={u,w} durchaus wohldefiniert sein!

Ich gehe aber davon aus, dass hier der erste Fall gemeint ist - du also hier das D als Def'bereich nimmst - sonst wäre das sicher angemerkt !?

Viele Grüße
DesterX

Bezug
                
Bezug
Definition einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Fr 27.10.2006
Autor: Kampfhase

Danke für die schnelle Antwort !

Wollte nur mal deswegen sicher gehen ! Hat sich also alles erledigt !

Nein, leider ist dazu nichts angegeben, in bezug auf den Definitionsbereich !

Viele Grüße und nochmals ein herzliches Dankeschön !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]