matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDefinition des Vektorprodukts
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Definition des Vektorprodukts
Definition des Vektorprodukts < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition des Vektorprodukts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Fr 30.09.2005
Autor: Bastiane

Hallo!

Das Vektorprodukt ist ja folgendermaßen definiert:

[mm] x\times{y}:=(x_2y_3-x_3y_2,x_3y_1-x_1y_3,x_1y_2-x_2y_1) [/mm]

Das Ergebnis ist ein Vektor. Nun steht aber in meinem Buch direkt unter dieser Definition:

Diese Definition des Vektorprodukts kann man sich leichter merken durch die Regel

[mm] x\times{y}=\vmat{e_1&e_2&e_3\\x_1&x_2&x_3\\y_1&y_2&y_3}=e_1\vmat{x_2&x_3\\y_2&y_3}-e_2\vmat{x_1&x_3\\y_1&y_3}+e_3\vmat{x_1&x_2\\y_1&y_2} [/mm]

wobei man die Determinante formal nach der ersten Zeile entwickelt.

Aber das Ergebnis einer Determinante ist doch eine Zahl - wie kann es da das Vektorprodukt sein, bei dessen Ergebnis ja ein Vektor rauskommt? Irgendwie verstehe ich das nicht. Kann mir das jemand erklären?

viele Grüße
Bastiane
[cap]


        
Bezug
Definition des Vektorprodukts: Determinante
Status: (Antwort) fertig Status 
Datum: 11:28 Fr 30.09.2005
Autor: danielinteractive

Hallo Bastiane!

Es ist nur eine Merkregel, und eigentlich eine falsche Verwendung der Determinante, denn [mm]e_1=\vektor{1 \\ 0 \\ 0}, e_2=\vektor{0 \\ 1 \\ 0}, e_3=\vektor{0 \\ 0 \\ 1}[/mm] sind Vektoren, die man ja eigentlich nicht als Einträge einer Matrix hat.

[mm]x\times{y}=\vmat{e_1&e_2&e_3\\x_1&x_2&x_3\\y_1&y_2&y_3}=e_1\vmat{x_2&x_3\\y_2&y_3}-e_2\vmat{x_1&x_3\\y_1&y_3}+e_3\vmat{x_1&x_2\\y_1&y_2}=\vektor{1 \\ 0 \\ 0}*(x_2*y_3-x_3*y_2)-\vektor{0 \\ 1 \\ 0}*(x_1*y_3-x_3*y_1)+\vektor{0 \\ 0 \\ 1}*(x_1*y_2-x_2*y_1)=\vektor{x_2*y_3-x_3*y_2 \\ x_3*y_1 - x_1*y_3 \\ x_1*y_2-x_2*y_1}[/mm]

ist dann so wieder ein Vektor.

mfG
Daniel
  


Bezug
                
Bezug
Definition des Vektorprodukts: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Fr 30.09.2005
Autor: Bastiane

Hallo Daniel!

> Es ist nur eine Merkregel, und eigentlich eine falsche
> Verwendung der Determinante, denn [mm]e_1=\vektor{1 \\ 0 \\ 0}, e_2=\vektor{0 \\ 1 \\ 0}, e_3=\vektor{0 \\ 0 \\ 1}[/mm]
> sind Vektoren, die man ja eigentlich nicht als Einträge
> einer Matrix hat.
>  
> [mm]x\times{y}=\vmat{e_1&e_2&e_3\\x_1&x_2&x_3\\y_1&y_2&y_3}=e_1\vmat{x_2&x_3\\y_2&y_3}-e_2\vmat{x_1&x_3\\y_1&y_3}+e_3\vmat{x_1&x_2\\y_1&y_2}=\vektor{1 \\ 0 \\ 0}*(x_2*y_3-x_3*y_2)-\vektor{0 \\ 1 \\ 0}*(x_1*y_3-x_3*y_1)+\vektor{0 \\ 0 \\ 1}*(x_1*y_2-x_2*y_1)=\vektor{x_2*y_3-x_3*y_2 \\ x_3*y_1 - x_1*y_3 \\ x_1*y_2-x_2*y_1}[/mm]
>  
> ist dann so wieder ein Vektor.

Und ich hatte mich schon gefragt, was denn mit [mm] e_1 [/mm] und so überhaupt in diesem Fall gemeint ist. Vielen Dank für deine schnelle Antwort - so macht das Ganze ja wieder Sinn. :-)

Viele Grüße
Bastiane
[ballon]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]