matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenDefinition der Ebene im Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Definition der Ebene im Raum
Definition der Ebene im Raum < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition der Ebene im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 26.06.2006
Autor: Pure

Hallo, also eigentlich sollten wir aus dem Buch eine Definition der Ebene im Raum abschreiben und uns so dieses Kapitel selbst beibringen. Bisher haben wir darüber noch gar nichts im Unterricht gemacht. Ich weiß, es hört sich blöd an, aber da gibt es irgendwie keine Definition, die genauso heißt. Das einzige, was wirklich sinnvoll zum dem Thema Ebenen drinsteht, ist eine Definition von der Parameterdarstellung einer Ebene.
Meine Frage ist jetzt, ob diese Definition mit der Parameterdarstellung meine gesuchte Definition ist (gesucht: Ebene im Raum).
Ich kann sie mal eben hinschreiben:

Gegeben sind ein Punkt A und zwei Vektoren u und v, die vom Nullvektor verschieden und zueinander parallel sind. Sie bestimmen eine Ebene. Für jeden Punkt X diser Ebene gilt:
[mm] \vec{ox} [/mm] = [mm] \vec{oa} [/mm] + s * [mm] \vec{u} [/mm] + [mm] t*\vec{v} [/mm]
mit gewissen Zahlen s E R, t E R.
Umgekehrt: Setzt man für s und t irgendwelche Zahlen ein, ergibt sich der Ortsvektor eines Punktes der Ebene.

Vielen Dank schon mal im Vorraus! :-)

Liebe Grüße, Pure

        
Bezug
Definition der Ebene im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 26.06.2006
Autor: leduart

Hallo pure
> Hallo, also eigentlich sollten wir aus dem Buch eine
> Definition der Ebene im Raum abschreiben und uns so dieses
> Kapitel selbst beibringen. Bisher haben wir darüber noch
> gar nichts im Unterricht gemacht. Ich weiß, es hört sich
> blöd an, aber da gibt es irgendwie keine Definition, die
> genauso heißt. Das einzige, was wirklich sinnvoll zum dem
> Thema Ebenen drinsteht, ist eine Definition von der
> Parameterdarstellung einer Ebene.
>  Meine Frage ist jetzt, ob diese Definition mit der
> Parameterdarstellung meine gesuchte Definition ist
> (gesucht: Ebene im Raum).
>  Ich kann sie mal eben hinschreiben:
>  
> Gegeben sind ein Punkt A und zwei Vektoren u und v, die vom
> Nullvektor verschieden und zueinander parallel sind. Sie

Hoffentlich nur ein Schreibfehler, NICHT parallel sind wichtig.

> bestimmen eine Ebene. Für jeden Punkt X diser Ebene gilt:
>   [mm]\vec{ox}[/mm] = [mm]\vec{oa}[/mm] + s * [mm]\vec{u}[/mm] + [mm]t*\vec{v}[/mm]

Das ist sicher eine gute Definition. Eine andere wäre : eine Ebene ist ein 2- dimensionaler affiner Unterraum des [mm] \IR^ [/mm] {3}. Aber das ist wohl eher Uni als Schule.

>  mit gewissen Zahlen s E R, t E R.
>  Umgekehrt: Setzt man für s und t irgendwelche Zahlen ein,
> ergibt sich der Ortsvektor eines Punktes der Ebene.
>  
> Vielen Dank schon mal im Vorraus! :-)

Nimm das ruhig so, besser geht es kaum.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]