matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDefinition Eigenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Definition Eigenraum
Definition Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Eigenraum: Eigenraum
Status: (Frage) beantwortet Status 
Datum: 10:15 So 22.06.2008
Autor: schlumpfinchen123

Hallo,

also ich habe ein Problem mit der Definition des Eigenraumes. Zum einen habe ich gelesen, dass ein Eigenraum ein Untervektorraum ist, der von den Eigenvektoren eines Eigenwertes gebildet wird. Mit dieser Aussage kann ich noch etwas anfangen.
Denn das würde doch bedeuten, dass ein Eigenraum zu einem bestimmten Eigenwert [mm] \lambda [/mm] , der Vektorraum ist, der aus allen Vektoren besteht, die durch Linearkombination der Eigenvektoren von [mm] \lambda [/mm] gebildet werden kann. Ist das richtig so? Oder habe ich hier schon etwas falsch verstanden?

Andererseits steht im Skript folgendes:

Sei f: V [mm] \to [/mm] V ein Endomorphismus, und sei [mm] \lambda [/mm] ein Eigenwert von f, dann gilt:

[mm] E(\lambda) [/mm] = { u [mm] \in [/mm] V | u ist Eigenvektor von f zum Eigenwert [mm] \lambda} \cup [/mm] {0}


Würde laut dieser Aussage der Eigenraum nicht einfach die Menge sein, die aus den Eigenvektoren von [mm] \lambda [/mm] besteht plus dem Nullvektor ? Aber das wiederspricht sich doch mit der Aussage von oben, oder?

Als drittes habe ich noch gelesen, dass der Eigenraum [mm] E(\lambda) [/mm] = Kern(f - [mm] \lambda id_V) [/mm] ist. Unter dieser Definition kann ich mir gar nichts vorstellen. Ich weiß zwar was ein Kern ist, aber ansonsten kann ich mit der Aussage wenig anfangen.

Kann mir vielleicht jemand dabei helfen, den Begriff des Eigenraumes besser zu verstehen?
Vielen Dank schon mal!




        
Bezug
Definition Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 So 22.06.2008
Autor: NixZuTun

Für eine Linearkombination zweier Eigenvektoren [mm] $x_1, x_2$ [/mm] zum Eigenwert [mm] $\lambda$ gilt:$$f(\alpha_1 x_1 [/mm] + [mm] \alpha_2 x_2) [/mm] = [mm] \alpha_1f(x_1) [/mm] + [mm] \alpha_2f(x_2) [/mm] = [mm] \alpha_1\lambda x_1 [/mm] + [mm] \alpha_2\lambda x_2 [/mm] = [mm] \lambda(\alpha_1x_1 [/mm] + [mm] \alpha_2x_2)$$Daher [/mm] sind Linearkombinationen von Eigenvektoren selbst wieder Eigenvektoren und folglich auch in der Menge aus deiner zweiten Definition enthalten.

Außerdem gilt für einen Eigenvektor x von f zum Eigenwert [mm] $\lambda$: [/mm] $$(f - [mm] \lambda id_V)x [/mm] = f(x) - [mm] \lambda id_V(x) [/mm] = [mm] \lambda [/mm]  x - [mm] \lambda [/mm] x = 0$$Also ist jeder Eigenvektor im besagtem Kern enthalten. Das dieses für Nicht-Eigenvektoren nicht gilt ist offensichtlich.

Gruß, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]