matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDefinitheit von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Definitheit von Matrizen
Definitheit von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitheit von Matrizen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:17 Mo 05.07.2004
Autor: Ksenka

Ich habe diese Frage in keinem weiteren Forum gestellt.
Seien A, B (n, n)- Matrizen und C eine (m, n)- Matrix. zu zeigen ist:
(i) A pd (positiv definit) und B nnd (nicht-negativ definit) => A + B pd
(ii) A nnd => CA(C(Transponiert)) nnd
(iii) A pd und Rg(C) = m =>  CA(C(Transponiert)) pd

        
Bezug
Definitheit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Di 06.07.2004
Autor: Marcel

Hallo Ksenka,

> Ich habe diese Frage in keinem weiteren Forum gestellt.
>
> Seien A, B (n, n)- Matrizen und C eine (m, n)- Matrix. zu
> zeigen ist:
>  (i) A pd (positiv definit) und B nnd (nicht-negativ
> definit) => A + B pd

Ich helfe dir jetzt bei der (i) (zu den anderen habe ich mir auch noch keine Gedanken gemacht), und wir warten weiter noch auf eine Reaktion deinerseits!
Dabei gehe ich einfach einmal davon aus, dass die Einträge der Matrizen komplexe Zahlen sind, d.h. $A,B [mm] \in \IC^{\ nxn}$... [/mm]

Sei $x [mm] \in \IC^n-\{0\}$ [/mm] beliebig, aber fest. Dann folgt:
[mm]\overline{x}^T*(A+B)*x=\underbrace{\overline{x}^T*A*x}_{> 0,\ da\ A\ pd}+\underbrace{\overline{x}^T*B*x}_{\ge 0,\ da\ B\ nnd} > 0[/mm].
Da $x [mm] \in \IC^n-\{0\}$ [/mm] beliebig war, ist $A+B$ pd.

(Beachte auch:
Es gilt [mm] $(A+B)^T=A^T+B^T=\overline{A}+\overline{B}=\overline{A+B}$, [/mm] d.h. aus $A,B$ hermitesch folgt: $A+B$ hermitesch (und es ist natürlich auch $A+B [mm] \in \IC^{\ nxn}$, [/mm] wenn $A,B [mm] \in \IC^{\ nxn}$).) [/mm]

(Ich kenne und benutzte folgende Definition(en):
1.) Eine (hermitesche) Matrix $C [mm] \in \IC^{\ nxn}$ [/mm] heißt pd genau dann, wenn für alle [m]x \in \IC^n-\{0\}[/m] gilt:
[mm]\overline{x}^T*C*x > 0[/mm].
Sie heißt positiv semidefinit (oder nicht-negativ definit) genau dann, wenn [mm] $\forall [/mm] x [mm] \in \IC^n$ [/mm] gilt:
[mm]\overline{x}^T*C*x \ge 0[/mm].
Ist dir dieses bekannt?

2.) Bemerkung: Eine Matrix $C [mm] \in \IC^{\ nxn}$ [/mm] heißt hermitesch genau dann, wenn gilt: [mm]C^T=\overline{C}[/mm].)

Viele Grüße
Marcel

Bezug
                
Bezug
Definitheit von Matrizen: Hallo Marcel,
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Di 06.07.2004
Autor: Ksenka

vielen Dank für deine Hilfe , eigentlich waren die Einträge der
Matrizen reelle Zahlen aber dein Einsatz war schon richtig. noch mal vielen Dank.
Mit freundlichen Grüßen
Ksenka

Bezug
                        
Bezug
Definitheit von Matrizen: Hallo Marcel,
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 Di 06.07.2004
Autor: Marcel

Hallo Ksenka,

die Übertragung meiner Rechnung auf reellwertige (symmetrische) positiv definite Matrizen (und nnd etc.) hast du also hinbekommen. Falls nicht, dann ist es auch nicht schlimm, denn meine Rechnung schließt diese ja nicht aus! Ist also etwas allgemeiner! ;-)

Wie sieht es denn mit den anderen Aufgaben aus? Hast du irgendwelche Ideen dazu? Oder hast du sie bereits gelöst und benötigst aufgrunddessen unsere Hilfe nicht weiter?
Falls dem so sein sollte, so kannst du uns deine Lösung ja mal posten, dann können wir sie mal kontrollieren, falls du das möchtest!
Wir erwarten jedenfalls etwas Eigeninitiative deinerseits (so wie du 'erwartest', dass wir dir bei deinen Aufgaben helfen ;-)), gegebenenfalls kannst du ja kurz aufzählen, welche Ideen du bisher dazu hattest und an welcher Stelle du nicht weitergekommen bist, falls du die Aufgaben noch nicht komplett gelöst hast...

Viele Grüße
Marcel

Bezug
        
Bezug
Definitheit von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Mo 05.07.2004
Autor: Marc

Hallo Ksenka,

[willkommenmr]

> Ich habe diese Frage in keinem weiteren Forum gestellt.
>
> Seien A, B (n, n)- Matrizen und C eine (m, n)- Matrix. zu
> zeigen ist:
>  (i) A pd (positiv definit) und B nnd (nicht-negativ
> definit) => A + B pd
>  (ii) A nnd => CA(C(Transponiert)) nnd

>  (iii) A pd und Rg(C) = m =>  CA(C(Transponiert)) pd

Erinnerung

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]