matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDef. einer Funktion als Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Def. einer Funktion als Reihe
Def. einer Funktion als Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Def. einer Funktion als Reihe: Verständnis
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 22.04.2011
Autor: yonca

Hallo,

ich habe einmal eine ganz allgemeine Frage bezüglich der Definition von Funkionen mittels unendlichen Reihen.
Ist es richtig, dass Reihen nur an den Stellen eine Funktion definieren können, an denen sie konvergieren?
Ich meine an den Stellen, wo sie divergieren würden die Funktionswerte dann ja gegen unendlich gehen. Aber kann denn ein Funktionswert nicht auch unendlich sein?

Vielen Dank schon mal!
Gruß Yonca

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Def. einer Funktion als Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Fr 22.04.2011
Autor: leduart

Hallo
Deine aussage ist richtig. In  der Schule sagt man zwar noch 1/x "ist" für x=0 _ înfty. oder tan(x) für [mm] x=\pi/2 [/mm] ist [mm] \infty. [/mm]
das ist aber nur eine schlecht Kurzform dafür dass [mm]\limes_{x\rightarrow\ipi/2} tan(x)\textrm{ bestimmt divergiert}[/mm].
aber tanx ist für [mm] x=\pi/2 [/mm] nicht definiert, sondern nur auf dem offenen Intervall [mm] (-\pi/2,+\pi/2) [/mm] der Konvergenzradius der tan-Reihe ist [mm] \pi/2, [/mm] und nur innerhalb ist die fkt damit definiert.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]