matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreDe Morgan´sche Regel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - De Morgan´sche Regel
De Morgan´sche Regel < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

De Morgan´sche Regel: Tipps zum Lösen
Status: (Frage) beantwortet Status 
Datum: 17:52 Sa 17.10.2009
Autor: Mathegirl

Aufgabe
[mm] 1.A\setminus(B\cup C)=(A\setminus B)\cap(A\setminus [/mm] C)

[mm] 2.A\setminus(B\cap C)=(A\setminus B)\cup(A\setminus [/mm] C)

Ich möchte diese beiden Regeln von De Morgan beweisen, weiß aber nicht so recht wie. Ich habe mal etwas versucht, aber ich habe wirklich keine richtige Ahnung, wie das gehen soll!

Hier meine "Idee":
zu 1. [mm] A\setminus(B \cup C)=(A\setminus B)\cap(A\setminus [/mm] C)

[mm] x\in A\setminus (B\cup C)\gdw x\in A\wedge x\not\in [/mm] B [mm] \wedge x\not\in [/mm] C
[mm] \Rightarrow x\in A\setminus B\wedge x\in A\setminus [/mm] C
[mm] \Rightarrow x\in(A\setminus B)\cap (A\setminus [/mm] C)

Und welche Pfeile muss ich setzen, damit die Bedeutung stimmt?
Ich denke mal, meine Idee ist nicht richtig!

Bitte um Hilfe!


Ich habe diese Frage in keinem anderen Forum und auf keiner anderen Internetseite gestellt.



        
Bezug
De Morgan´sche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 17.10.2009
Autor: rainerS

Hallo!

> [mm]1.A\setminus(B\cup C)=(A\setminus B)\cap(A\setminus[/mm] C)
>  
> [mm]2.A\setminus(B\cap C)=(A\setminus B)\cup(A\setminus[/mm] C)
>  Ich möchte diese beiden Regeln von De Morgan beweisen,
> weiß aber nicht so recht wie. Ich habe mal etwas versucht,
> aber ich habe wirklich keine richtige Ahnung, wie das gehen
> soll!
>  
> Hier meine "Idee":
>  zu 1. [mm]A\setminus(B \cup C)=(A\setminus B)\cap(A\setminus C)[/mm]
>  
> [mm]x\in A\setminus (B\cup C)\gdw x\in A\wedge x\not\in B\wedge x\not\in C[/mm]
>  [mm]\Rightarrow x\in A\setminus B\wedge x\in A\setminus C[/mm]
>  [mm]\Rightarrow x\in(A\setminus B)\cap (A\setminus C)[/mm]
>  
> Und welche Pfeile muss ich setzen, damit die Bedeutung
> stimmt?
>  Ich denke mal, meine Idee ist nicht richtig!

Dein Ansatz ist in Ordnung, du musst ihn ein bischen verfeinern. Manchmal hilft es, wenn man ein solches Problem von beiden Seiten angeht, um sich in der Mitte zu treffen. Also:

[mm] x\in A\setminus (B\cup C)\gdw x\in A\wedge x\not\in B\wedge x\not\in C[/mm]

[ok]

Du solltest vielleicht noch den Zwischenschritt

[mm] x\in A\wedge x\notin (B\cup C)[/mm]

einfügen.

Jetzt fange ich mal von hinten an:

[mm]x\in(A\setminus B)\cap (A\setminus C)[/mm]
[mm] \gdw (x\in A \wedge x\notin B) \wedge (x\in A \wedge x\notin C) [/mm]
[mm] \gdw x\in A \wedge x\notin B\wedge x\in A \wedge x\notin C [/mm]

Vertauschung des zweiten und dritten Terms:

[mm] \gdw x\in A \wedge x\in A\wedge x\notin B\wedge x\notin C [/mm]

[mm] $x\in [/mm] A [mm] \wedge x\in [/mm] A$ ist eine Tautologie, also:

[mm] \gdw x\in A \wedge x\notin B\wedge x\notin C [/mm]

Aha, also sind wir beim selben Ausdruck angekommen wie oben. Setze beide Teile zusammen!

Viele Grüße
   Rainer



Bezug
                
Bezug
De Morgan´sche Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Sa 17.10.2009
Autor: Mathegirl

Danke Rainer, aber muss das nicht "oder" heißen bei einigen Ausführungen, also [mm] \vee, [/mm] besonders in der ersten Zeile?

Bezug
                        
Bezug
De Morgan´sche Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Sa 17.10.2009
Autor: ChopSuey

Hi Mathegirl,

wenn $\ x [mm] \not\in \left( B \cup C \right) [/mm] $ dann ist $\ x $ weder Element von $\ B$, noch von $\ C $, d.h. $\ x $ darf darf nicht in $\ B$ und nicht in $\ C $ enthalten sein.

$ x [mm] \not\in \left( B \cup C \right) \gdw [/mm] x [mm] \not\in [/mm] B [mm] \wedge [/mm] x [mm] \not\in [/mm] C $.

Nun klarer?

Viele Grüße
ChopSuey

Bezug
                                
Bezug
De Morgan´sche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Sa 17.10.2009
Autor: Mathegirl

ja okay, das stimmt. Verstanden habe ich das jetzt auch!

wenn ich Aussage 1 beweisen möchte, muss ich doch in beide Richtungen beweisen, also [mm] "\Rightarrow" [/mm] und [mm] "\Rightarrow" [/mm] oder?

also müsste dann theoretisch der Beweis von [mm] "\Rightarrow" [/mm] folgendermaßen lauten:

[mm] A\setminus(B \cup [/mm] C) [mm] \gdw x\in A\wedge x\not\in B\vee x\not\in [/mm] C
[mm] \gdw x\in A\wedge x\in B\wedge x\in A\wedge x\not\in [/mm] C
[mm] \gdw x\in A\wedge x\not\in B\wedge x\in A\wedge x\in [/mm] C

Oder liege ich da falsch? Oder fehlt da was?




Bezug
                                        
Bezug
De Morgan´sche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 17.10.2009
Autor: ChopSuey

Hi Mathegirl,

Rainer hat die logischen Implikationen einwandfrei aufgeschrieben. Versuch das am Besten zu verstehen.

Ich schreib's dir trozdem mal gerne auf:

1. $ [mm] A\setminus(B\cup C)=(A\setminus B)\cap(A\setminus [/mm] C) $

Wir wollen also zeigen $\ [mm] \left(A\setminus(B\cup C)\right) \subseteq \left( (A\setminus B)\cap(A\setminus C) \right) [/mm] $ das ist die eine Richtung "$\ [mm] \Rightarrow [/mm] $ "
Und dann zeigen wir $\ [mm] \left( (A\setminus B)\cap(A\setminus C) \right) \subseteq \left(A\setminus(B\cup C)\right) [/mm] $ das ist dann "$\ [mm] \Leftarrow [/mm] $"

"$\ [mm] \Rightarrow [/mm] $ "

$\ x [mm] \in \left(A\setminus(B\cup C)\right) \Rightarrow [/mm]  x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in (B\cup [/mm] C) [mm] \Rightarrow [/mm] (x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] B) [mm] \wedge [/mm] ( x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] C)  [mm] \Rightarrow [/mm] x [mm] \in [/mm] ( [mm] A\setminus [/mm] B) [mm] \wedge [/mm] x [mm] \in [/mm] ( [mm] A\setminus [/mm] C )$

Nun die andere Richtung "$\ [mm] \Leftarrow [/mm] $ "

$\ x [mm] \in \left( (A\setminus B)\cap(A\setminus C) \right) \Rightarrow [/mm] (x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] B) [mm] \wedge [/mm] ( x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] C) [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] B [mm] \cup [/mm] C [mm] \Rightarrow [/mm] x [mm] \in (A\setminus (B\cup [/mm] C))$

$\ [mm] \Box [/mm] $

Aber natürlich kann man es (einfacher und schneller) mit der äquivalenz $\ [mm] \gdw [/mm] $ in 2 Zeilen zeigen.

Das funktioniert natürlich nur dann, wenn beide Mengen gleich sind.


> ja okay, das stimmt. Verstanden habe ich das jetzt auch!
>
> wenn ich Aussage 1 beweisen möchte, muss ich doch in beide
> Richtungen beweisen, also [mm]"\Rightarrow"[/mm] und [mm]"\Rightarrow"[/mm]
> oder?
>  
> also müsste dann theoretisch der Beweis von [mm]"\Rightarrow"[/mm]
> folgendermaßen lauten:
>  
> [mm]A\setminus(B \cup[/mm] C) [mm]\gdw x\in A\wedge x\not\in B\vee x\not\in[/mm]
> C
>  [mm]\gdw x\in A\wedge x\in B\wedge x\in A\wedge x\not\in[/mm] C
>  [mm]\gdw x\in A\wedge x\not\in B\wedge x\in A\wedge x\in[/mm] C
>  
> Oder liege ich da falsch? Oder fehlt da was?
>
>
>  

Wenn es etwas gibt, dass dir Unklar ist, frag einfach :-)

Viele Grüße
ChopSuey

Bezug
                                                
Bezug
De Morgan´sche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Sa 17.10.2009
Autor: Mathegirl

Vielen Vielen Dank!!
Ich denke warscheinlich echt zu kompliziert! Und vor allem zu unlogisch!
Aber ich denke, dass ich es verstanden habe!

Allerdings habe ich bei der Aussage 2 die zu Beweisen ist schon wieder meine probleme. das Verständnis, wann ich [mm] \vee [/mm] oder [mm] \wedge [/mm] verwenden muss, das ist immer noch so ein Problem.

Vielen dank nochmal

Bezug
                                                        
Bezug
De Morgan´sche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 17.10.2009
Autor: ChopSuey

Hi Mathegirl,

ich musste das auch erstmal verstehen ;-) Ging mir nicht anders als Dir.

Ich habe das Gefühl, dass du versuchst die Vereinigungsmenge $\ [mm] \cup [/mm] $ in ein logisches "und" $\ [mm] \wedge [/mm] $ zu übersetzen. Das ist ja auch nicht so verkehrt, denn wenn $\ x [mm] \in [/mm] A [mm] \cup [/mm] B$, dann ist nach Definition der Vereinungsmenge $\ x [mm] \in [/mm] A $ oder $ x [mm] \in [/mm] B$ oder auch in Beiden meinetwegen enthalten, das kannst du gewiss schreiben als

$\ x [mm] \in [/mm] A [mm] \cup [/mm] B [mm] \gdw [/mm] x [mm] \in [/mm] A [mm] \vee [/mm] x [mm] \in [/mm] B $.

Aber wenn $\ x [mm] \not\in [/mm] A [mm] \cup [/mm] B $ dann ist $\ x $ nicht(!) in $\ A $ und nicht(!) in $\ B $

Also $\ x [mm] \not\in [/mm] A [mm] \cup [/mm] B [mm] \gdw [/mm] x [mm] \not\in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] B $


Vielleicht hilft Dir ja der Artikel []De Morgansche Gesetze:Wikipedia.

Viele Grüße
ChopSuey


Bezug
                                                                
Bezug
De Morgan´sche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 So 18.10.2009
Autor: Mathegirl

Dann werd ich die Hoffnung mal nicht aufgeben, das ich das auch irgendwann nochmal verstehen werde!! Der Ehrgeiz und das Interesse sind ja schonmal da! :)

Ich habe mich mal an der Aussage:
[mm] A\setminus( B\cap C)=(A\setminus B)\cup(A\setminus [/mm] C)

[mm] "\Rightarrow" [/mm]
[mm] x\in(A\setminus(B\cap [/mm] C))
[mm] \Rightarrow x\in A\wedge x\not\in(B\cap [/mm] C)
[mm] \Rightarrow (x\in A\wedge x\in B)\vee(x\in A\wedge x\in [/mm] C)
[mm] \Rightarrow x\in( A\setminus B)\vee x\in( A\setminus [/mm] C)

[mm] "\Leftarrow" [/mm]
[mm] x\in(A\setminus B)\cup(A\setminus [/mm] C)
[mm] \Rightarrow(x\in A\wedge x\not\in B)\vee(x\in A\wedge x\not\in [/mm] C)
[mm] \Rightarrow x\in A\wedge x\in A\wedge x\not\in B\vee x\not\in [/mm] C
[mm] \Rightarrow x\in A\wedge x\in [/mm] A ist eine Tautologie, also:
[mm] x\in A\wedge x\not\in B\vee x\not\in [/mm] C


Ich glaube nicht, dass der Beweis korrekt ist, aber es wäre schön, wenn jemand ihn korrigieren könnte bzw. mir sagen kann, wo meine Fehler liegen.

Welche Pfeile muss ich nutzen? ich denke mal [mm] \Rightarrow [/mm] und nicht [mm] \gdw [/mm]

Eine Gute Nacht und vielleicht kann mir hierbei jemand nochmal helfen

Bezug
                                                                        
Bezug
De Morgan´sche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 04:11 So 18.10.2009
Autor: felixf

Hallo!

> Dann werd ich die Hoffnung mal nicht aufgeben, das ich das
> auch irgendwann nochmal verstehen werde!! Der Ehrgeiz und
> das Interesse sind ja schonmal da! :)
>  
> Ich habe mich mal an der Aussage:
> [mm]A\setminus( B\cap C)=(A\setminus B)\cup(A\setminus[/mm] C)
>
> [mm]"\Rightarrow"[/mm]

Du meinst eher [mm] "$\subseteq$". [/mm] Es ist ja keine Implikation oder Aequivalenz zu zeigen.

>  [mm]x\in(A\setminus(B\cap[/mm] C))
>  [mm]\Rightarrow x\in A\wedge x\not\in(B\cap[/mm] C)

Erstmal:

[mm]\Rightarrow x\in A\wedge \neg(x\in B \wedge x \in C)[/mm]
[mm]\Rightarrow x\in A\wedge (x\not\in B \vee x \not\in C)[/mm]

Daraus folgt allerdings

[mm]\Rightarrow (x\in A\wedge x\not\in B) \vee (x \in A \wedge x \not\in C)[/mm]

und nicht

>  [mm]\Rightarrow (x\in A\wedge x\in B)\vee(x\in A\wedge x\in C)[/mm]
>  [mm]\Rightarrow x\in( A\setminus B)\vee x\in( A\setminus[/mm] C)

Das folgt auch nicht aus der Zeile davor.

> [mm]"\Leftarrow"[/mm]

Du meinst eher [mm] "$\supseteq$". [/mm]

>  [mm]x\in(A\setminus B)\cup(A\setminus[/mm] C)
>  [mm]\Rightarrow(x\in A\wedge x\not\in B)\vee(x\in A\wedge x\not\in C)[/mm]

[ok]

>  [mm]\Rightarrow x\in A\wedge x\in A\wedge x\not\in B\vee x\not\in C[/mm]

Wie kommst du hierdrauf?!

>  [mm]\Rightarrow x\in A\wedge x\in[/mm] A ist eine Tautologie,

Hier bekommst du ganz bestimmt keine Tautologie raus.

> also:
>  [mm]x\in A\wedge x\not\in B\vee x\not\in[/mm] C

Du kannst aus einer Tautologie nicht einfach irgendwelche Aussagen folgern. Diese Implikation ist also ebenfalls falsch.

> Ich glaube nicht, dass der Beweis korrekt ist, aber es
> wäre schön, wenn jemand ihn korrigieren könnte bzw. mir
> sagen kann, wo meine Fehler liegen.
>  
> Welche Pfeile muss ich nutzen? ich denke mal [mm]\Rightarrow[/mm]
> und nicht [mm]\gdw[/mm]

Ja, da du zwei Inklusionen zeigst reicht [mm] $\Rightarrow$ [/mm] voellig aus.

LG Felix


Bezug
                                                                                
Bezug
De Morgan´sche Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 So 18.10.2009
Autor: rainerS

Hallo!

> >  [mm]\Rightarrow x\in A\wedge x\in[/mm] A ist eine Tautologie,

>
> Hier bekommst du ganz bestimmt keine Tautologie raus.

Diese Verwirrung war meine Schuld, weil ich es zu schlampig hingeschrieben habe:

[mm] x\in A \gdw x\in A\wedge x\in A [/mm]

ist die gemeinte Tautologie.

Viele Grüße
   Rainer



Bezug
                                                                                        
Bezug
De Morgan´sche Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:06 So 18.10.2009
Autor: felixf

Hallo zusammen!

> > >  [mm]\Rightarrow x\in A\wedge x\in[/mm] A ist eine Tautologie,

> >
> > Hier bekommst du ganz bestimmt keine Tautologie raus.
>  
> Diese Verwirrung war meine Schuld, weil ich es zu schlampig
> hingeschrieben habe:
>  
> [mm]x\in A \gdw x\in A\wedge x\in A[/mm]
>  
> ist die gemeinte Tautologie.

Ah, ok, dann macht es jetzt etwas mehr Sinn. :)

Was allerdings nichts daran aendert, das in der Zeile darueber Klammern fehlen; ohne die Klammern (also so wie es da steht) ist es falsch. (Es ist $A [mm] \wedge [/mm] B [mm] \vee [/mm] C = (A [mm] \wedge [/mm] B) [mm] \vee [/mm] C$ und nicht $A [mm] \wedge [/mm] (B [mm] \vee [/mm] C)$.)

LG Felix


Bezug
        
Bezug
De Morgan´sche Regel: kleiner Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Sa 17.10.2009
Autor: ChopSuey

Hallo Mathegirl,

bei Aufgaben dieser Art hilft es mir immer ungemein, zu wissen, dass zwei Mengen $\ A, B $ dann gleich sind, wenn gilt:

$\ A [mm] \subseteq [/mm] B [mm] \wedge [/mm] B [mm] \subseteq [/mm] A $

Die Richtung "$\ [mm] \Rightarrow$" [/mm] ist dann $\ A [mm] \subseteq [/mm] B $ und "$\ [mm] \Leftarrow [/mm] $" ist $\ B [mm] \subseteq [/mm] A $

Vielleicht hilft dir das ja ebenfalls.

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]