matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungDas Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Das Integral
Das Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das Integral: Flächenberechnung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:54 Do 13.10.2005
Autor: Lambda

Hallo! Ich habe zwei Aufgaben, mit denen ich überhaupt nicht klar komme und schreibe morgen eine Klausur. Bitte Hilfe!

Aufgabe 1: Die Funktion f ist gegeben durch f(x)= [mm] \bruch{1}{4}x^{3} [/mm] - [mm] \bruch{3}{4}x^{2} [/mm] - [mm] \bruch{9}{4}x [/mm] + [mm] \bruch{11}{4} [/mm] . Zeige, dass die Tangenten in den Extrempunkten von f mit dem Graphen von f jeweils Flächen mit gleichem Flächeninhalt einschließen.

Aufgabe 2: Bestimme die Parallele zur 1. Achse, die mit dem Graphen von    f(x)= [mm] x^{2} [/mm] eine Fläche mit dem Flächeninhalt [mm] \bruch{8}{3} [/mm] *  [mm] \wurzel{2} [/mm] einschließt.


Danke!

Gruß, Lambda

        
Bezug
Das Integral: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 18:08 Do 13.10.2005
Autor: Roadrunner

Hallo Lambda!


> Aufgabe 2: Bestimme die Parallele zur 1. Achse, die mit dem
> Graphen von    f(x)= [mm]x^{2}[/mm] eine Fläche mit dem
> Flächeninhalt [mm]\bruch{8}{3}[/mm] *  [mm]\wurzel{2}[/mm] einschließt.

Nennen wir unsere Parallele zur x-Achse mal:  $g(x) \ = \ a$.


Dann müssen wir uns zunächst die Integrationsgrenzen der betrachteten Fläche ermitteln, die Schnittstellen der beiden Kurven:

[mm] $x^2 [/mm] \ = \ a$     [mm] $\gdw$ $x_{1/2} [/mm] \ = \ [mm] \pm \wurzel{a}$ [/mm]


Nun ermitteln wir uns die Fläche durch Integralrechnung:

$A \ = \ [mm] \integral_{x_1}^{x_2}{g(x)-f(x) \ dx} [/mm] \ = \ [mm] \integral_{x_1}^{x_2}{a-x^2 \ dx} [/mm] \ = \ [mm] \integral_{-\wurzel{a}}^{+\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{8}{3}\wurzel{2}$ [/mm]


Aus Symmetriegründen gilt:  [mm] $\integral_{-\wurzel{a}}^{+\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \red{2}*\integral_{0}^{\wurzel{a}}{a-x^2 \ dx}$ [/mm]


Damit lautet unsere Bestimmungsgleichung also:

[mm] $2*\integral_{0}^{\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{8}{3}\wurzel{2}$ [/mm]     bzw.     [mm] $\integral_{0}^{\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{4}{3}\wurzel{2}$ [/mm]


Kannst Du nun nach $a_$ auflösen?

Kontrollergebnis: $a \ = \ 2$


Gruß vom
Roadrunner


Bezug
        
Bezug
Das Integral: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:20 Do 13.10.2005
Autor: Roadrunner

Hallo Lambda!


> Aufgabe 1:
> Die Funktion f ist gegeben durch [mm]f(x)=\bruch{1}{4}x^{3} - \bruch{3}{4}x^{2} - \bruch{9}{4}x + \bruch{11}{4}[/mm] .
> Zeige, dass die Tangenten in den
> Extrempunkten von f mit dem Graphen von f jeweils Flächen
> mit gleichem Flächeninhalt einschließen.

Hast Du Dir denn mal die beiden Extremstellen sowie die zugehörigen Funktionswerte berechnet.

Dann hast Du auch gleich die beiden Geradengleichungen der entsprechenden Tangenten.


Dann musst Du Dir zu jeder Tangente jeweils den zweiten Schnittpunkt mit der Funktion $f(x)_$ berechnen und hast damit für die Integralrechnung die zweite Integrationsgrenze.

Hier nun analog zu Aufgabe 2 die Flächen per Integral berechnen und vergleichen.


Hier mal eine kleine Skizze zur Veranschaulichung:

[Dateianhang nicht öffentlich]


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]