matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDarstellung Kurven (Spirale)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Darstellung Kurven (Spirale)
Darstellung Kurven (Spirale) < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung Kurven (Spirale): Spiralen
Status: (Frage) beantwortet Status 
Datum: 14:39 Do 07.06.2012
Autor: Masseltof

Hallo.

Gegeben sind mir einige Bildchen von Spiralen.
Ich soll dazu die Funktionen mit [mm] f_{k}:[0,\infty)\to R^{2} [/mm]
[mm] f_{1}(t)=\vektor{10cos(t)\\10sin(2t)} [/mm]
[mm] f_{2}(t)=\vektor{t*cos(t)\\t*sin(t)} [/mm]
[mm] f_{3}(t)=\vektor{t*cos(t)\\t*sin(2t)} [/mm]
[mm] f_{4}(t)=\vektor{10cos(t)\\10sin(t)} [/mm]
[mm] f_{5}(t)=\vektor{2t*cos(t)\\2t*sin(t)} [/mm]
[mm] f_{6}(t)=\vektor{2t*cos(t)\\sin(t)} [/mm]

Kann man die Koeffizienten wie das 2t*cos(t) irgendwie in einem bestimmten Muster deuten?
Einen Kreis und eine Spirale habe ich durch recherchieren bereits identifizieren können.

Grüße

        
Bezug
Darstellung Kurven (Spirale): Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Do 07.06.2012
Autor: Al-Chwarizmi


> Hallo.
>  
> Gegeben sind mir einige Bildchen von Spiralen.
> Ich soll dazu die Funktionen mit [mm]f_{k}:[0,\infty)\to R^{2}[/mm]
>  
> [mm]f_{1}(t)=\vektor{10cos(t)\\10sin(2t)}[/mm]
>  [mm]f_{2}(t)=\vektor{t*cos(t)\\t*sin(t)}[/mm]
>  [mm]f_{3}(t)=\vektor{t*cos(t)\\t*sin(2t)}[/mm]
>  [mm]f_{4}(t)=\vektor{10cos(t)\\10sin(t)}[/mm]
>  [mm]f_{5}(t)=\vektor{2t*cos(t)\\2t*sin(t)}[/mm]
>  [mm]f_{6}(t)=\vektor{2t*cos(t)\\sin(t)}[/mm]
>  
> Kann man die Koeffizienten wie das 2t*cos(t) irgendwie in
> einem bestimmten Muster deuten?
>  Einen Kreis und eine Spirale habe ich durch recherchieren
> bereits identifizieren können.
>
> Grüße


Anstatt im Internet suchen: selber überlegen !
Nimm die Darstellungen in Faktoren auseinander und
interpretiere alles schrittweise geometrisch. Beispiel:

  $\ [mm] f_5(t)\ [/mm] =\ [mm] 2*t*\vektor{cos(t)\\sin(t)}$ [/mm]

Der Teil  [mm] \vektor{cos(t)\\sin(t)} [/mm]  beschreibt einen Punkt, der auf dem
Einheitskreis mit konstanter Winkelgeschwindigkeit rotiert
und damit eben gerade diesen Einheitskreis zeichnet
und auf ewig umrundet.
Nun kommt ein Faktor t dazu, der proportional zur
Zeit t wächst - anstatt des vorherigen konstanten
Radius haben wir also (bei gleichbleibender Rotations-
geschwindigkeit) einen linear mit der Zeit wachsenden
Radius (=Abstand vom Nullpunkt). So entsteht eine
archimedische Spirale.
Der zusätzliche Faktor 2 zoomt die ganze Kurve
einfach nochmals mit diesem Vergrößerungsfaktor.

Im Übrigen empfehle ich dir sehr, bei solchen Übungen
dich hinzusetzen, selber Wertetafeln zu berechnen
(auch wenn dies etwas langweilig klingen mag !)
und die Kurven mal Punkt für Punkt zu zeichnen -
und dabei ihre Bildungsgesetze zu durchschauen.

LG   Al-Chw.


Bezug
                
Bezug
Darstellung Kurven (Spirale): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Do 07.06.2012
Autor: Masseltof

Super, danke Al.

Das ich mir eigene Gedanken machen sollte ist richtig. Zeitmanagement muss ich noch lernen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]