matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDarstellende Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Darstellende Matrix
Darstellende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 28.07.2011
Autor: Der-Madde-Freund

Aufgabe
Sei [mm] V=\mathbb C^3 [/mm] der unitäre Standardraum der Dimension 3 und sei [mm] U:=\{x \in V | x_1 + ix_2 - ix_3 =0 \}. [/mm] Bestimme die darstellende Matrix der orthogonalen Projektion von V auf U (bzgl. der Standardbasis).

In der Lösung steht nun:

"Eine ONB von U ist gegeben durch [mm] u_1= \vektor{0 \\ 1/ \sqrt{2} \\ 1/ \sqrt{2}} [/mm] und [mm] u_2= \vektor{2/ \sqrt{6} \\ i/ \sqrt{6} \\ -i/ \sqrt{6}}". [/mm]

Meine Frage hier: Warum reichen 2 Vektoren als ONB von U? Ist U nicht von der Dimension 3...?

Weiter gilt, dass eine orthogonale Projektion p:V [mm] \to [/mm] U durch v [mm] \mapsto u_1 [/mm] + [mm] u_2 [/mm] gegeben ist (steht im Skript).

In der Lösung steht nun: "Dadurch ergibt sich die darstellende Matrix  [mm] \pmat{ 2/3 & -i/3 & i/3 \\ i/3 & 2/3 & 1/3 \\ -i/3 & 1/3 & 2/3 }" [/mm]

Hier ist mir immernoch schleierhaft, wie sich diese 3x3 Matrix zusammensetzt...

Bin für jede Hilfe dankbar!!!

        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 28.07.2011
Autor: Leopold_Gast

[mm]U[/mm] ist die Nullstellenmenge einer linearen Gleichung und muß daher die Dimension 2 haben (du kannst ja zwei der Größen [mm]x_1,x_2,x_3[/mm] beliebig vorgeben und die dritte aus der Gleichung errechnen). Das ist wie bei einer Ebenengleichung im dreidimensionalen reellen Raum. Auch dort hat die Ebene die Dimension 2.

Daß die beiden Vektoren [mm]u_1,u_2[/mm] zu [mm]U[/mm] gehören, rechnet man leicht nach, daß sie normiert und zueinander orthogonal sind, ebenso.

Ergänzt man [mm]u_1,u_2[/mm] durch [mm]u_3[/mm] zu einer Orthonormalbasis von [mm]V[/mm], so kann man jedes [mm]x \in V[/mm] bezüglich dieser Basis darstellen:

[mm]x = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 \ \ \text{mit} \ \ \lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}[/mm]

Dann folgt gemäß Definition von [mm]p[/mm]:

[mm]p(x) = \lambda_1 \, p(u_1) + \lambda_2 \, p(u_2) + \lambda_3 \, p(u_3) = \lambda_1 u_1 + \lambda_2 u_2[/mm]

Die dritte der orthogonalen Komponenten wird also von [mm]p[/mm] verschluckt, während die ersten beiden Komponenten erhalten bleiben. Das zeigt, daß [mm]p[/mm] "die" (nicht: "eine") orthogonale Projektion von [mm]V[/mm] auf [mm]U[/mm] ist.

Um von einer darstellenden Matrix sprechen zu können, muß klar sein, auf welche Basis man sich bezieht. Die Angabe fehlt hier. Mit der kanonischen Basis [mm]e_1, e_2, e_3[/mm] von [mm]V[/mm] scheint es aber zu funktionieren. Die Spalten der Matrix sind gerade [mm]p(e_1), \, p(e_2), \, p(e_3)[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]