matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeDarst. der Lösung eines LGS
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Darst. der Lösung eines LGS
Darst. der Lösung eines LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darst. der Lösung eines LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mo 20.09.2010
Autor: Stefan-auchLotti

Hallo,

wie ja bekannt ist, lässt sich die allgemeine Lösung eines inhomogenen LGS so darstellen lässt:

[mm] $$L(A,b)=k_0+L(A,0)$$ [/mm]

wobei [mm] $k_0$ [/mm] eine Lösung des inhomogenen Systems ist.

Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad haben, so ist das kein Problem: wir schreiben z.B.

[mm] $$\vektor{0 \\ 0\\2\\0\\2}+\left\langle\vektor{0\\1\\0\\2\\0}\right\rangle$$ [/mm]

Wie schreibt man's aber auf, wenn die allgemeine Lösung des inh. LGS zwei oder mehr frei wählbare Parameter enthält, also z.B. folgende Form hat:

[mm] $\left\{\vektor{b\\a+b\\4\\5\\2b}~\vrule~a,b\in \IF_{4}\right\}$ [/mm]

        
Bezug
Darst. der Lösung eines LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 20.09.2010
Autor: angela.h.b.


> Hallo,
>  
> wie ja bekannt ist, lässt sich die allgemeine Lösung
> eines inhomogenen LGS so darstellen lässt:
>  
> [mm]L(A,b)=k_0+L(A,0)[/mm]
>  
> wobei [mm]k_0[/mm] eine Lösung des inhomogenen Systems ist.
>  
> Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad
> haben, so ist das kein Problem: wir schreiben z.B.
>  
> [mm]\vektor{0 \\ 0\\ 2\\ 0\\ 2}+\left\langle\vektor{0\\ 1\\ 0\\ 2\\ 0}\right\rangle[/mm]
>  
> Wie schreibt man's aber auf, wenn die allgemeine Lösung
> des inh. LGS zwei oder mehr frei wählbare Parameter
> enthält, also z.B. folgende Form hat:
>  
> [mm]\left\{\vektor{b\\ a+b\\ 4\\ 5\\ 2b}~\vrule~a,b\in \IF_{4}\right\}[/mm]

Hallo,

Du kannst dann schreiben

[mm] \vektor{0\\0\\4\\5\\0}+<\vektor{0\\1\\0\\0\\0},\vektor{1\\1\\0\\0\\2}>_{\IF_4}. [/mm]

Gruß v. Angela

P.S.: Eigentlich hat es nichts mit Deiner Frage zu tun, aber was ist eigentlich mit [mm] \IF_4 [/mm] genau gemeint? Der Körper mit 4 Elementen? Und was bedeuten die Einträge 4 und 5 im Spaltenvektor? Mich irritiert das gerade etwas...






Bezug
                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mo 20.09.2010
Autor: Stefan-auchLotti

Dankeschön :)

Genau, das ist der Restklassenkörper [mm] $\IZ/ 4\IZ$. [/mm]

4 und 5 sind in dem Zusammenhang dann natürlich 0 und 1, hab ich gar nicht dran gedacht.

Bis bald,

Stefan.

Bezug
                        
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Mo 20.09.2010
Autor: angela.h.b.


> Genau, das ist der Restklassenkörper [mm]\IZ/ 4\IZ[/mm].

[mm] $\IZ/ 4\IZ$ [/mm] ist aber kein Körper...

Gruß v. Angela



Bezug
                                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mo 20.09.2010
Autor: Stefan-auchLotti

Bei mir war 4 gerade eine Primzahl. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]