matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDachprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Dachprodukt
Dachprodukt < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dachprodukt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:23 Mi 01.10.2008
Autor: Noki-2003

Aufgabe
Es sei [mm] f:\IR^3\to\IR^3 [/mm] die lineare Abbildung, deren Matrix bezüglich der Standardbasis B={e1,e2,e3} die Gestalt [mm] A=\pmat{1&2&3\\2&-1&1\\-2&0&1} [/mm] hat. Berechne die Matrix der induzierten Abbildung [mm] \wedge^2f:\wedge^2\IR^3\to\wedge^2\IR^3 [/mm] bezüglich der durch B induzierten Basis von [mm] \wedge^2\IR^3 [/mm]

Hallo,

bin leider schon wieder am verzweifeln:-( Irgendwie kann ich mit diesem Dachprodukt noch so gar nichts anfangen...
Die Basis B von [mm] \wedge^2\IR^3 [/mm] müsste : [mm] \{e1\wedge e2, e1\wedge e3, e2\wedge e3\} [/mm] sein...aber nun weiß ich leider nicht weiter - keine Ahnung wie man mit diesem Produkt richtig rechnet :-(

Vielen Dank schon mal...

Viele Grüße
Noki

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Dachprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 01.10.2008
Autor: statler

Hallo und [willkommenmr]

> Es sei [mm]f:\IR^3\to\IR^3[/mm] die lineare Abbildung, deren Matrix
> bezüglich der Standardbasis B={e1,e2,e3} die Gestalt
> [mm]A=\pmat{1&2&3\\2&-1&1\\-2&0&1}[/mm] hat. Berechne die Matrix der
> induzierten Abbildung
> [mm]\wedge^2f:\wedge^2\IR^3\to\wedge^2\IR^3[/mm] bezüglich der durch
> B induzierten Basis von [mm]\wedge^2\IR^3[/mm]

> bin leider schon wieder am verzweifeln:-( Irgendwie kann
> ich mit diesem Dachprodukt noch so gar nichts anfangen...
>  Die Basis B von [mm]\wedge^2\IR^3[/mm] müsste : [mm]\{e1\wedge e2, e1\wedge e3, e2\wedge e3\}[/mm]
> sein...aber nun weiß ich leider nicht weiter - keine Ahnung
> wie man mit diesem Produkt richtig rechnet :-(

Was ist denn [mm]\wedge^{2}[/mm]f(e1[mm]\wedge[/mm]e2)? Das ist f(e1)[mm]\wedge[/mm]f(e2), und weil du f kennst (durch die Matrix), kannst du das mit Hilfe der Rechenregeln für das Dachprodukt ausrechnen und als Linearkombination der Basiselemente hinschreiben. Damit hast du schon die erste Spalte der Matrix von [mm]\wedge^{2}[/mm]f. Und dann so weiter...

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Dachprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Mi 01.10.2008
Autor: Noki-2003

Hi!

Danke für die Antwort...glaub' ich bin auch schon ein Stückchen weiter gekommen:-) Habe meine Abbildung f aus der Matrix A bestimmt und f(e1) [mm] \wedge [/mm] f(e2) ausgerechnet. Da kommt dann entsprechend der Matrix A  
[mm] \vektor{1 \\ 2 \\ -2} \wedge \vektor{2 \\ -1 \\ 0} [/mm] raus...aber wie schreib ich das jetzt als Linearkombination meiner Basis B? Glaub' das Dachprodukt verwirrt mich da - muss ich die 2Vektoren jetzt erstmal multiplizieren oder bleiben die so stehen oder wie funktioniert das mit dem Dachprodukt?

Viele Grüße
Noki

Bezug
                        
Bezug
Dachprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Mi 01.10.2008
Autor: statler


> Hi!
>  
> Danke für die Antwort...glaub' ich bin auch schon ein
> Stückchen weiter gekommen:-) Habe meine Abbildung f aus der
> Matrix A bestimmt und f(e1) [mm]\wedge[/mm] f(e2) ausgerechnet. Da
> kommt dann entsprechend der Matrix A  
> [mm]\vektor{1 \\ 2 \\ -2} \wedge \vektor{2 \\ -1 \\ 0}[/mm]
> raus...aber wie schreib ich das jetzt als Linearkombination
> meiner Basis B? Glaub' das Dachprodukt verwirrt mich da -
> muss ich die 2Vektoren jetzt erstmal multiplizieren oder
> bleiben die so stehen oder wie funktioniert das mit dem
> Dachprodukt?

[mm]\vektor{1 \\ 2 \\ -2} \wedge \vektor{2 \\ -1 \\ 0}[/mm] =
(e1 + 2e2 - 2e3)[mm]\wedge[/mm](2e1 - e2) = ...
...und jetzt kannst du Distributivität und Antikommutativität verwenden und dann alles durchsortieren.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]