matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL, nicht konst. Koeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL, nicht konst. Koeffizient
DGL, nicht konst. Koeffizient < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL, nicht konst. Koeffizient: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:26 Fr 23.11.2007
Autor: mk81

Aufgabe
Ein dünner längsbelasteter elastischer Stab (Druckstab) der Länge L ist durch folgendes Modell beschreiben.

- positiver x-Richtung von unten nach oben
- Stab stehend

d/dx( N(x) ) + q(x) = 0  ...  Gleichgewichtsbedingung


N(x) = A(x) * sigma(x)  ...  Längskraft ( pos. x-Richtung )
q(x) = - roh * g * A(x)  ... Volumenkraft ( nur Gewicht )
sigma(x) = E * eps(x)  ...   Materialgleichung ( Hook'sches Gesetz )

eps(x) = d/dx( u(x) )  ....  Verzerrung

Randbedingungen:
Stab am unteren Ende fest verankert: u(0) = 0
Druckkraft am oberen Ende: N(x=L) = -F

Gesucht: exakte Lösung der Randwertproblems, also u(x)



Ich habe das Bsp folgender Maßen versucht zu lösen ( ' ... Ableitung nach x ):

Ansatz
     ( A(x) * u(x)' )' = ( roh *g / E ) * A(x)
     A(x) * u(x)' = roh *g * [mm] \integral_{x}^{x0}{A(x) dx} [/mm] = ( 1 / E )* g * N(x)
     u(x)' =  ( 1 / E )* g * N(x) / A(x)
     u(x) = ( roh *g / E ) *  [mm] \integral_{x}^{x0}{N(x)/N'(x) dx} [/mm]

das Integral kann ich dann nicht mehr lösen. anscheinend soll die Integration der Gleichgewichtsbedingung schon ein wesentliches Ergebnis liefern. Vllt. kann mir wer einen alternativen Ansatz zeigen ?

    


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL, nicht konst. Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Fr 23.11.2007
Autor: leduart

Hallo
1. N(x)=A(x)*u'(x)  daraus hab ich N'(x)=A'*u'*A*u''
wieso differenzierst du A nicht? oder hab ich was misverstanden?
2. WENN dein vorgehen richtig ist, dann ist
[mm] \integral{f'(x)/f(x) dx}=lnf(x)+C [/mm]
Gruss leduart

Bezug
                
Bezug
DGL, nicht konst. Koeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Fr 23.11.2007
Autor: mk81


> Hallo
>  1. N(x)=A(x)*u'(x)  daraus hab ich N'(x)=A'*u'*A*u''
>  wieso differenzierst du A nicht? oder hab ich was
> misverstanden?
>  2. WENN dein vorgehen richtig ist, dann ist
> [mm]\integral{f'(x)/f(x) dx}=lnf(x)+C[/mm]
>  Gruss leduart


( A(x) * u'(x) )' = A(x)' * u'(x) + u''(x) * A(x)

das Problem ist das A (Querschnittsfläche) von x abhängt und ich muss die Lösung der DGL, also u(x) = ....  ermitteln
und das kann ich irgendwie nicht auflösen

Bezug
                        
Bezug
DGL, nicht konst. Koeffizient: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:29 Fr 23.11.2007
Autor: mk81

Aufgabe
.

Das integral das ich habe ist die Form

[mm] \integral_{a}^{b}{f(x)/f'(x) dx} [/mm]

die Ableitung steht unter dem bruchstrich

Bezug
                                
Bezug
DGL, nicht konst. Koeffizient: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 25.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
DGL, nicht konst. Koeffizient: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Di 27.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]