matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL n-ter Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL n-ter Ordnung
DGL n-ter Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL n-ter Ordnung: DGL lösen
Status: (Frage) beantwortet Status 
Datum: 18:19 Sa 11.06.2011
Autor: Babybel73

Hallo zusammen

Habe soeben folgende Aufgabe lösen wollen:
Bestimmen Sie die allgemeine Loesung der folgenden Differentialgleichung:
[mm] y^{}6-y^{5}-8y^{4}-4y^{2}-48y^{2}=0 [/mm]
Hinweis: y(t) = [mm] e^{2it} [/mm] ist eine Lesung.

Meine Lösung:
1) Char. Gleichung bestimmen:
[mm] x^{6}-x^{5}-8x^{4}-4x^{3}-48x^{2}=0 [/mm]

2) Nullstellen finden: (Via Polynomdivision)
[mm] x_{1,2}=0 x_{3}=-3 x_{4}=4 x_{5,6}=+/- [/mm] 2i

3) Ansätze aus Liste ablesen:
[mm] \Rightarrow [/mm] allg. Lösung: y(t)= [mm] c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+c_{5}sin(2t)+c_{6}cos(2t) [/mm]

Nun steht ja im Hinweis: [mm] e^{2it} [/mm] sei eine Lösung, wozu brauch ich das??? Sollte ich dies in meine Lösung einbringen?

Liebe Grüsse
Babybel

        
Bezug
DGL n-ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Sa 11.06.2011
Autor: MathePower

Hallo Babybel73,



> Hallo zusammen
>  
> Habe soeben folgende Aufgabe lösen wollen:
>  Bestimmen Sie die allgemeine Loesung der folgenden
> Differentialgleichung:
>  [mm]y^{}6-y^{5}-8y^{4}-4y^{2}-48y^{2}=0[/mm]
>  Hinweis: y(t) = [mm]e^{2it}[/mm] ist eine Lesung.
>  
> Meine Lösung:
>  1) Char. Gleichung bestimmen:
>  [mm]x^{6}-x^{5}-8x^{4}-4x^{3}-48x^{2}=0[/mm]
>  
> 2) Nullstellen finden: (Via Polynomdivision)
>  [mm]x_{1,2}=0 x_{3}=-3 x_{4}=4 x_{5,6}=+/-[/mm] 2i
>  
> 3) Ansätze aus Liste ablesen:
>  [mm]\Rightarrow[/mm] allg. Lösung: y(t)=
> [mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+c_{5}sin(2t)+c_{6}cos(2t)[/mm]
>  
> Nun steht ja im Hinweis: [mm]e^{2it}[/mm] sei eine Lösung, wozu
> brauch ich das??? Sollte ich dies in meine Lösung
> einbringen?


Nein.

Betrachtest Du die Lösungen nur an Hand der Nullstellen,
so ergibt sich:

[mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+k_{5}e^{2i*t}+k_{6}e^{-2i*t}[/mm]

Das ist die komplexe Lösung der obigen DGL.

Da der Realteil und Imaginärteil dieser komplexen Lösung
ebenfalls die obige DGL lösen, ergibt sich schliesslich

[mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+c_{5}sin(2t)+c_{6}cos(2t)[/mm]

Dabei wurden die komplexen Konstanten [mm]k_{5}, \ k_{6}[/mm]
so gewählt, daß

[mm]k_{5}e^{2i*t}+k_{6}e^{-2i*t} \in \IR[/mm]


>  
> Liebe Grüsse
>  Babybel



Gruss
MathePower

Bezug
                
Bezug
DGL n-ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 11.06.2011
Autor: Babybel73

Hallo Mathe-Power

Um obige Aufgabe zu lösen, habe ich die mathematische Formelsammlung von Papula benutz und dort drin steht:
"....
3. Fall:
Eine einfach konjugierte komplexe Lösung [mm] x_{1,2}=a+ib [/mm] liefert den Beitrag [mm] e^{at}*(C_{1}*(sin(bt)+cos(bt)). [/mm]
..."

Du schreibst nun aber

> [mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+k_{5}e^{2i*t}+k_{6}e^{-2i*t}[/mm]
>  
> Das ist die komplexe Lösung der obigen DGL.
>  
> Da der Realteil und Imaginärteil dieser komplexen Lösung
>  ebenfalls die obige DGL lösen, ergibt sich schliesslich
>  

Ist dies immer der Fall, dass der Realteil und der Imaginärteil der komplexen Lösung die DGL löst??

> [mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+c_{5}sin(2t)+c_{6}cos(2t)[/mm]
>  
> Dabei wurden die komplexen Konstanten [mm]k_{5}, \ k_{6}[/mm]
>  so
> gewählt, daß
>  
> [mm]k_{5}e^{2i*t}+k_{6}e^{-2i*t} \in \IR[/mm]

Und was müsste ich nun als Lösung dieser Aufgabe hin schreiben?
Die komplexe Lösung der DGL oder aber die zweite??
Denn in der Lösung steht eben die komplexe Lösung der DGL.

Liebe Grüsse
Babybel

Bezug
                        
Bezug
DGL n-ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 11.06.2011
Autor: MathePower

Hallo Babybel73,

> Hallo Mathe-Power
>  
> Um obige Aufgabe zu lösen, habe ich die mathematische
> Formelsammlung von Papula benutz und dort drin steht:
>  "....
>  3. Fall:
>  Eine einfach konjugierte komplexe Lösung [mm]x_{1,2}=a+ib[/mm]
> liefert den Beitrag [mm]e^{at}*(C_{1}*(sin(bt)+cos(bt)).[/mm]
>  ..."
>  
> Du schreibst nun aber
>  
> >
> [mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+k_{5}e^{2i*t}+k_{6}e^{-2i*t}[/mm]
>  >  
> > Das ist die komplexe Lösung der obigen DGL.
>  >  
> > Da der Realteil und Imaginärteil dieser komplexen Lösung
>  >  ebenfalls die obige DGL lösen, ergibt sich
> schliesslich
>  >  
> Ist dies immer der Fall, dass der Realteil und der
> Imaginärteil der komplexen Lösung die DGL löst??

>


Ja, das ist immer so.

  

> >
> [mm]c_{1}+c_{2}t+c_{3}e^{-3t}+c_{4}e^{4t}+c_{5}sin(2t)+c_{6}cos(2t)[/mm]
>  >  
> > Dabei wurden die komplexen Konstanten [mm]k_{5}, \ k_{6}[/mm]
>  >  
> so
> > gewählt, daß
>  >  
> > [mm]k_{5}e^{2i*t}+k_{6}e^{-2i*t} \in \IR[/mm]
>  
> Und was müsste ich nun als Lösung dieser Aufgabe hin
> schreiben?
>  Die komplexe Lösung der DGL oder aber die zweite??
>  Denn in der Lösung steht eben die komplexe Lösung der
> DGL.


Dann ist wohl die komplexe Lösung anzugeben.


>  
> Liebe Grüsse
>  Babybel


Gruss
MathePower

Bezug
                                
Bezug
DGL n-ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 11.06.2011
Autor: Babybel73

Hallo MathePower

Okay. Alles klar. Vielen Dank! :)

Nun versuche ich mich gerade an dieser DGL:

[mm] x'=-tx+e^{t^{2}/3}*(x^{1/3}) [/mm]

Dies ist ja eine nichtlineare DGL 1. Ordnung. Wir haben aber während der Vorlesung nie nichtlineare DGLs durchgenommen.
Welche Substitution könnte ich also vornehmen, um sie in eine lineare DGL umzuschreiben?

Liebe Grüsse
Babybel

Bezug
                                        
Bezug
DGL n-ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Sa 11.06.2011
Autor: MathePower

Hallo Babybel73,

> Hallo MathePower
>  
> Okay. Alles klar. Vielen Dank! :)
>  
> Nun versuche ich mich gerade an dieser DGL:
>  
> [mm]x'=-tx+e^{t^{2}/3}*(x^{1/3})[/mm]
>  
> Dies ist ja eine nichtlineare DGL 1. Ordnung. Wir haben
> aber während der Vorlesung nie nichtlineare DGLs
> durchgenommen.


Es handelt sich hier um eine Bernoullische DGL.


> Welche Substitution könnte ich also vornehmen, um sie in
> eine lineare DGL umzuschreiben?


Setze hier mit [mm]x\left(t\right)=\left( \ z\left(t\right) \ \right)^{\alpha}[/mm] an.

Dies führt dann für eine bestimmte Wahl von [mm]\alpha[/mm]
zu einer linearen DGL für [mm]z\left(t\right)[/mm]


>  
> Liebe Grüsse
>  Babybel


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]