matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit konstanten Lösungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - DGL mit konstanten Lösungen
DGL mit konstanten Lösungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit konstanten Lösungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:51 Fr 19.08.2011
Autor: Harris

Hi!

Ich habe eine Frage.

Angenommen, ich habe eine DGL $y'=f(y)$ und $f(y)$ sei Lipschitzstetig in $y$ und habe Nullstellen genau in $y=0$ und $y=1$.
Für $y>1$ sei $f(y)<0$ und Für $y<0$ sei $f(y)>0$.

Habe ich nun ein AWP mit $0<y(0)<1$. Daraus folgt ja, dass stets $0<y(t)<1$ gilt. Bei einem AWP mit $y(0)<0$ gilt ja stets $y'(t)>0$ und $y(t)<0$, also ist die Lösung $y(t)$ nach oben beschränkt. Startet die Lösung oberhalb von $1$, so fällt sie streng monoton und ist durch $1$ nach unten beschränkt.

Nun die Frage: Kann ich hieraus bereits folgern, dass die Lösung jedes AWPs für alle $t>0$ existiert? Wenn ja, aus welchem Satz folgt das?

Und kann ich folgern, dass für ein AWP mit $y(0)<0$ gilt, dass [mm] $lim_{t\rightarrow\infty}y(t)=0$. [/mm] Wenn ja, warum?

Grüße!
Harris

        
Bezug
DGL mit konstanten Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Sa 20.08.2011
Autor: leduart

Hallo
Mit deinen Nullstellen kann f(y)<0 für y>0 nicht gelten!
warum die Nullstelle bei 1?
Gruß leduart


Bezug
                
Bezug
DGL mit konstanten Lösungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:56 So 21.08.2011
Autor: Harris

Irgendwie ist die Aufgabe Schrott, gell?

Anscheinend wurde hier versucht, alle drei Fälle in eine Aufgabe zu packen.
Ich denke, sie soll fragen, ob eine Lösung, die zwischen zwei konstanten Lösungen startet, auch für alle [mm] $t\in\IR$ [/mm] definiert ist.

Und eine Lösung, die nach unten (oben) beschränkt ist und streng monoton fällt (steigt) auch für alle [mm] $t\in\IR$ [/mm] definiert ist.

Anschaulich ist das ja irgendwie klar. Gilt das nach den Sätzen für Ober- und Unterfunktionen?

Bezug
                        
Bezug
DGL mit konstanten Lösungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 23.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
DGL mit konstanten Lösungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 So 21.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]